• Title/Summary/Keyword: Finite difference time domain method

Search Result 360, Processing Time 0.025 seconds

A Dispersion Analysis for Minimum Grids in the Frequency Domain Acoustic Wave Equation (주파수영역 음향 파동방정식에서 최소 격자수 결정을 위한 격자분산 분석)

  • Jang Seong-Hyung;Shin Chang-Soo;Yoon Kwang-Jin;Suh Sang-Young;Shin Sung-Ryul
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.2
    • /
    • pp.39-47
    • /
    • 2000
  • A great deal of computing time and a large computer memory are needed to solve wave equation in a large complex subsurface layers using the finite difference method. The computing time and memory can be reduced by decreasing the number of grid points per minimum wave length. However, the decrease of grids may cause numerical dispersion and poor accuracy. In this study we performed the grid dispersion analysis for several rotated finite difference operators, which was commonly used to reduce grids per wavelength with accuracy in order to determine the solution for the acoustic wave equation in frequency domain. The rotated finite difference operators were to be extended to 81, 121 and 169 difference stars and studied whether the minimum grids could be reduced to 2 or not. To obtain accuracy (numerical errors less than $1\%$) the following was required: more than 13 grids for conventional 5 point difference stars, 9 grids for 9 difference stars, 3 grids for 25 difference stars, and 2.7 grids for 49 difference stars. After grid dispersion analysis for the new rotated finite difference operators, more than 2.5 grids for 81 difference stars, 2.3 grids for 121 difference stars and 2.1 grids for 169 difference stars were needed. However, in the 169 difference stars, there was no solution because of oscillation of the dispersion curves in the group velocity curves. This indicated that the grids couldn't be reduced to 2 in the frequency acoustic wave equation. According to grid dispersion analysis for the determination of grid points, the more rotated finite difference operators, the fewer grid points. However, the more rotated finite difference operators that are used, the more complex the difference equation terms.

  • PDF

2D Crank-Nicolson FDTD Method Based on Isotropic-Dispersion Finite Difference Equation for Lossy Media (손실 매질에 대한 Isotropic-Dispersion 유한 차분식의 2D Crank-Nicolson FDTD 기법)

  • Kim, Hyun;Koh, Il-Suek;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.7
    • /
    • pp.805-814
    • /
    • 2010
  • The Crank-Nicolson isotropic-dispersion finite difference time domain(CN ID-FDTD) scheme is proposed based on isotropic-dispersion finite difference(ID-FD) $equation^{[1],[2]}$. The dispersion relation of CN ID-FDTD is derived for lossy media by solving the eigenvalue problem of iteration matrix in spatial spectral domain, in addition, the weighting factors and scaling factors of the CN ID-FDTD scheme are presented for low dispersion error. The CN ID-FDTD scheme makes the dispersion error drastically reduced and shows accurate numerical results compared to the conventional Crank-Nicolson FDTD method.

Analysis of Transient Scattering from Arbitrarily Shaped Three-Dimensional Conducting Objects Using Combined Field Integral Equation (결합 적분방정식을 이용한 삼차원 임의형태 도체 구조물의 전자파 지연산란 해석)

  • Jung, Baek-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.11
    • /
    • pp.551-558
    • /
    • 2002
  • A time-domain combined field integral equation (CFIE) is presented to obtain the transient scattering response from arbitrarily shaped three-dimensional conducting bodies. This formulation is based on a linear combination of the time-domain electric field integral equation (EFIE) with the magnetic field integral equation (MFIE). The time derivative of the magnetic vector potential in EFIE is approximated using a central finite difference approximation and the scalar potential is averaged over time. The time-domain CFIE approach produces results that are accurate and stable when solving for transient scattering responses from conducting objects. The incident spectrum of the field may contain frequency components, which correspond to the internal resonance of the structure. For the numerical solution, we consider both the explicit and implicit scheme and use two different kinds of Gaussian pulses, which may contain frequencies corresponding to the internal resonance. Numerical results for the EFIE, MFIE, and CFIE are presented and compared with those obtained from the inverse discrete Fourier transform (IDFT) of the frequency-domain CFIE solution.

Development of Three Dimensional Chloride Ion Penetration Model Based on Finite Element Method (유한요소법을 이용한 3차원 염해 침투 예측 모델의 개발)

  • Choi, Won;Kim, Hanjoong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.43-49
    • /
    • 2015
  • Most of agricultural structures located in seashore could not avoid rapid deterioration of concrete because chloride-ion and $CO_2$ gradually penetrate into concrete. However, since most of models can be able to describe the phenomenon of penetration by using one or two dimensional models based on finite difference method (FDM), those modes can not simulate the real geometry and it takes a lot of computational time to complete even the calculation. To overcome those weaknesses, three dimensional numerical model considering time dependent variables such as surface concentration of chloride and diffusion coefficient of domain based on finite element method (FEM) was suggested. This model also included the neutralization occurred by the penetration of $CO_2$. Because the model used various sizes of tetrahedral mesh instead of equivalent rectangular mesh, it reduced the computational time to compare with FDM. As this model is based on FEM, it will be easily extended to execute multi-physics simulation including water evaporation and temperature change of concrete.

A New Method to Estimate the Induced Electric Field in the Human Child Exposed to a 100 kHz-10 MHz Magnetic Field Using Body Size Parameters

  • Park, Young-Min;Song, Hye-Jin;Byun, Jin-Kyu
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.174-180
    • /
    • 2014
  • In this paper, a new and simple method is proposed to quickly estimate the induced electric field in the human child exposed to a 100 kHz-10 MHz magnetic field, for the sake of electromagnetic field (EMF) safety assessment. The quasi-static finite-difference time-domain (FDTD) method is used to calculate the induced electric fields in high resolution 3D human child models with various body size parameters, in order to derive the correction factor for the estimation equation. The calculations are repeated for various frequencies and incident angles of the magnetic field. Based on these calculation results, a new and simple estimation equation for the 99th percentile value of the body electric field is derived that depends on the body size parameters, and the incident magnetic field. The estimation errors were equal to or less than 5.1%, for all cases considered.

A Fourth-Order Accurate Numerical Boundary Scheme for the Planar Dielectric Interface: a 2-D TM Case

  • Hwang, Kyu-Pyung
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.1
    • /
    • pp.11-15
    • /
    • 2011
  • Preserving high-order accuracy in high-order FDTD solutions across dielectric interfaces is very important for practical time-domain electromagnetic simulations. This paper presents a fourth-order accurate numerical boundary scheme for the planar dielectric interface to be used in the fourth-order FDTD method proposed earlier by the author. The interface scheme for the two-dimensional (2-D) transverse magnetic (TM) polarization case is derived and validated by monitoring the $L_2$ norm errors in the numerical solutions of a partially-filled cavity demonstrating its fourth-order convergence and long-time numerical stability in the presence of the planar dielectric interface.

Analysis of a transmission line on Si-based lossy structure using Finite-Difference Time-Domain(FDTD) method (손실있는 실리콘 반도체위에 제작된 전송선로의 유한차분법을 이용한 해석)

  • 김윤석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.9B
    • /
    • pp.1527-1533
    • /
    • 2000
  • Basically, a general characterization procedure based on the extraction of the characteristic impedance and propagation constant for analyzing a single MIS(Metal-Insulator-Semiconductor) transmission line is used. In this paper, an analysis for a new substrate shielding MIS structure consisting of grounded cross-bars at the interface between Si and SiO2 layer using the Finite-Difference Time-Domain (FDTD) method is presented. In order to reduce the substrate effects on the transmission line characteristics, a shielding structure consisting of grounded cross bar lines over time-domain signal has been examined. The extracted distributed frequency-dependent transmission line parameters and corresponding equivalent circuit parameters as well as quality factor have been examined as functions of cross-bar spacing and frequency. It is shown that the quality factor of the transmission line can be improved without significant change in the characteristic impedance and effectve dielectric constant.

  • PDF

Finite-Difference Time-Domain Approach for the development of an Equivalent Circuit for a Single Step Microstrip Discontinuity in the Substrate (FDTD 방법을 이용한 단일 계단형 마이크로스트립 기판 불연속의 등가회로 개발)

  • 전중창;김태수;한대현;박위상
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.7
    • /
    • pp.1240-1246
    • /
    • 2000
  • The finite-difference time-domain (FDTD) method is applied to analyze a single step microstrip discontinuity in the substrate, and an equivalent circuit model comprised of two inductors and a capacitor has been developed using the numerical results. The microstrip discontinuity newly introduced in this paper has a thickness change of the substrate in the longitudinal direction with a uniform strip width. The discontinuity can be applied to the feeding circuit design for the patch antennas and interconnections between microwave circuit modules. The simulation results are compared with those computed by HFSS, and two results showed a good agreement. An equivalent circuit developed from the FDTD results, which is accurate within 2.4% in magnitudes of $S_{11}$ and $S_{21}$,can be applied for the computer-aided design of microwave circuits.

  • PDF

Analysis of SAR in a Human Head for a Cellular Phone (셀룰라 휴대폰에 의한 인체 두부의 SAR 해석)

  • 이애경;최형도;김진석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.6
    • /
    • pp.776-787
    • /
    • 1998
  • This paper analyzes the local specific absorption rates (SAR's) averaged over 1 g and 10 g in a human head model in contact with a mobile phone operating at 835 MHz. The used numerical method is a total field finite-difference time-domain (FDTD) technique. The phone was simulated with a conducting box, a plastic case, and a whip antennal composed of a monopole and a helix. The discrete human model of the spatial resolution 3 mm is based on Magnetic Resonance Imaging (MRI), computerized tomography (CT) and anatomical images. The near field and far field and far field patterns were analyzed for extended and retracted phone. The two methods to take the volumes of the weights, 1 g or 10 g in tissue are proposed and compared to offer a reproductive technique for SAR estimations.

  • PDF

Design and Development of Antenna with Stabilization of Radiation Pattern and Wide-Band Characteristics for MIMO/LAN/Broadcast Operations (안정된 복사패턴과 광대역 특성을 갖는 MIMO/LAN/방송용 안테나 설계 및 개발)

  • Jang, Yong-Woong
    • Journal of Broadcast Engineering
    • /
    • v.16 no.3
    • /
    • pp.483-489
    • /
    • 2011
  • In this paper, we propose a new antenna, which has wide bandwidth, good radiation patterns, and high-gain characteristics. We analysis the antenna using FDTD(Finite Difference Time Domain) method. And the antenna parameters are optimized to get maximum bandwidth. From the measured results, the bandwidth of the antenna is 0.839 octave, for the S11${\leq}$-10 dB. And the measured cross polarization level of the proposed antenna is less than -25 dB at the center frequency. Experimental data of the return loss and the radiation pattern of the proposed antenna are also presented, and the experimental bandwidth characteristics are relatively in good agreement with the FDTD results. The proposed antenna can be applied to MIMO, LAN, biomedical instruments, broadcasting-network system.