• Title/Summary/Keyword: Finite difference formula

Search Result 50, Processing Time 0.017 seconds

A New Approach for the Derivation of a Discrete Approximation Formula on Uniform Grid for Harmonic Functions

  • Kim, Philsu;Choi, Hyun Jung;Ahn, Soyoung
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.4
    • /
    • pp.529-548
    • /
    • 2007
  • The purpose of this article is to find a relation between the finite difference method and the boundary element method, and propose a new approach deriving a discrete approximation formula as like that of the finite difference method for harmonic functions. We develop a discrete approximation formula on a uniform grid based on the boundary integral formulations. We consider three different boundary integral formulations and derive one discrete approximation formula on the uniform grid for the harmonic function. We show that the proposed discrete approximation formula has the same computational molecules with that of the finite difference formula for the Laplace operator ${\nabla}^2$.

  • PDF

THOMAS ALGORITHMS FOR SYSTEMS OF FOURTH-ORDER FINITE DIFFERENCE METHODS

  • Bak, Soyoon;Kim, Philsu;Park, Sangbeom
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.891-909
    • /
    • 2022
  • The main objective of this paper is to develop a concrete inverse formula of the system induced by the fourth-order finite difference method for two-point boundary value problems with Robin boundary conditions. This inverse formula facilitates to make a fast algorithm for solving the problems. Our numerical results show the efficiency and accuracy of the proposed method, which is implemented by the Thomas algorithm.

New approach method of finite difference formulas for control algorithm (제어 알고리즘 구현을 위한 새로운 미분값 유도 방법)

  • Kim, Tae-Yeop
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.817-825
    • /
    • 2019
  • Difference equation is useful for control algorithm in the microprocessor. To approximate a derivative values from sampled data, it is used the methods of forward, backward and central differences. The key of computing discrete derivative values is the finite difference coefficient. The focus of this paper is a new approach method of finite difference formula. And we apply the proposed method to the recursive least squares(RLS) algorithm.

A FINITE DIFFERENCE/FINITE VOLUME METHOD FOR SOLVING THE FRACTIONAL DIFFUSION WAVE EQUATION

  • Sun, Yinan;Zhang, Tie
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.553-569
    • /
    • 2021
  • In this paper, we present and analyze a fully discrete numerical method for solving the time-fractional diffusion wave equation: ∂βtu - div(a∇u) = f, 1 < β < 2. We first construct a difference formula to approximate ∂βtu by using an interpolation of derivative type. The truncation error of this formula is of O(△t2+δ-β)-order if function u(t) ∈ C2,δ[0, T] where 0 ≤ δ ≤ 1 is the Hölder continuity index. This error order can come up to O(△t3-β) if u(t) ∈ C3 [0, T]. Then, in combinination with the linear finite volume discretization on spatial domain, we give a fully discrete scheme for the fractional wave equation. We prove that the fully discrete scheme is unconditionally stable and the discrete solution admits the optimal error estimates in the H1-norm and L2-norm, respectively. Numerical examples are provided to verify the effectiveness of the proposed numerical method.

A Simple Method to Reduce the Splitting Error in the LOD-FDTD Method

  • Kong, Ki-Bok;Jeong, Myung-Hun;Lee, Hyung-Soo;Park, Seong-Ook
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.1
    • /
    • pp.12-16
    • /
    • 2009
  • This paper presents a new iterative locally one-dimensional [mite-difference time-domain(LOD-FDTD) method that has a simpler formula than the original iterative LOD-FDTD formula[l]. There are fewer arithmetic operations than in the original LOD-FDTD scheme. This leads to a reduction of CPU time compared to the original LOD-FDTD method while the new method exhibits the same numerical accuracy as the iterative ADI-FDTD scheme. The number of arithmetic operations shows that the efficiency of this method has been improved approximately 20 % over the original iterative LOD-FDTD method.

Finite-element Method for Heat Transfer Problem in Hydrodynamic Lubrication

  • Kwang-June,Bai
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.4
    • /
    • pp.19-29
    • /
    • 1982
  • Galerkin's finite element method is applied to a two-dimensional heat convection-diffusion problem arising in the hydrodynamic lubrication of thrust bearings used in naval vessels. A parabolized thermal energy equation for the lubricant, and thermal diffusion equations for both bearing pad and the collar are treated together, with proper juncture conditions on the interface boundaries. it has been known that a numerical instability arises when the classical Galerkin's method, which is equivalent to a centered difference approximation, is applied to a parabolic-type partial differential equation. Probably the simplest remedy for this instability is to use a one-sided finite difference formula for the first derivative term in the finite difference method. However, in the present coupled heat convection-diffusion problem in which the governing equation is parabolized in a subdomain(Lubricant), uniformly stable numerical solutions for a wide range of the Peclet number are obtained in the numerical test based on Galerkin's classical finite element method. In the present numerical convergence errors in several error norms are presented in the first model problem. Additional numerical results for a more realistic bearing lubrication problem are presented for a second numerical model.

  • PDF

An Evaluation of the Hamrock and Dowson's EHL Film Thickness Formulas (Hamrock과 Dowson의 EHL 유막두께식에 대한 평가)

  • 박태조
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.115-122
    • /
    • 1996
  • In this paper, a finite difference method and the Newton-Raphson method are used to evaluate the Hamrock and Dowson's EHL film thickness formulas in elliptical contact problems. The minimum and central film thicknesses are compared with the Hamrock and Dowson's numerical results for various dimensionless parameters and with their film thickness formulas. The results of present analysis are more accurate and physically reasonable. The minimum film thickness formula is similar with the Hamrock and Dowson's results, however, the central film thickness formula shows large differences. Therefore, the Hamrock and Dowson's central film thickness formula should be replaced by following equation. $H_{c} = 4.88U^{0.68}G^{0.44}W^{0.096}(1-0.58e^{-0.60k})$ More accurate film thickness formula for general elliptical contact problems can be expected using present numerical methods and further research should be required.

DIFFERENCE OF TWO SETS AND ESTIMATION OF CLARKE GENERALIZED JACOBIAN VIA QUASIDIFFERENTIAL

  • Gao, Yan
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.2
    • /
    • pp.473-489
    • /
    • 2001
  • The notion of difference for two convex compact sets in Rⁿ, proposed by Rubinov et al, is generalized to R/sub mxn/. A formula of the difference for the two sets, which are convex hulls of a finite number of points, is developed. In the light of this difference, the relation between Clarke generalized Jacobian and quasidifferential, in the sense of Demyanov and Rubinov, for a nonsnooth function, is established. Based on the relation, the method of estimating Clarke generalized Jacobian via quasidifferential for a certain class of function, is presented.

Asymptotic computation of Greeks under a stochastic volatility model

  • Park, Sang-Hyeon;Lee, Kiseop
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.1
    • /
    • pp.21-32
    • /
    • 2016
  • We study asymptotic expansion formulae for numerical computation of Greeks (i.e. sensitivity) in finance. Our approach is based on the integration-by-parts formula of the Malliavin calculus. We propose asymptotic expansion of Greeks for a stochastic volatility model using the Greeks formula of the Black-Scholes model. A singular perturbation method is applied to derive asymptotic Greeks formulae. We also provide numerical simulation of our method and compare it to the Monte Carlo finite difference approach.

Modification of Terzaghi's Earth Pressure Formula on Tunnel Considering Dilatancy of Soil (지반의 팽창성을 고려한 터널의 테르자기 토압공식 수정)

  • Han, Heui-Soo;Cho, Jae-Ho;Yang, Nam-Yong;Shin, Baek-Chul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.23-30
    • /
    • 2011
  • In this study, Terzaghi's formula was modified to solve problems considering the dilatancy effect of the soil for estimating the earth pressure acting on tunnel. It is performed for the comparison with Terzaghi's formula and modified Terzaghi's formula, tunnel model test result of Kobe University Rock Mechanics Laboratory. From comparison results of the earth pressure acting on tunnel, the earth pressure calculated by the Terzaghi's formula was estimated largest value. The earth pressure measured through the tunnel model test was least value. The difference between the earth pressure derived from Terzaghi's original formula and that derived from the modified formula was caused by the dilation effect, which was caused by the soil volume change. The difference between the earth pressure derived from the modified formula and the earth pressure measured through the tunnel model test, earth pressure results from the energy making failure surface. The results of FEM analysis were almost consistent with the results of mathematical analysis.