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Abstract

This paper presents a new iterative locally one-dimensional finite-difference time-domain(LOD-FDTD) method that

has a simpler formula than the original iterative LOD-FDTD formula

M There are fewer arithmetic operations than

in the original LOD-FDTD scheme. This leads to a reduction of CPU time compared to the original LOD-FDTD me-
thod while the new method exhibits the same numerical accuracy as the iterative ADI-FDTD scheme. The number
of arithmetic operations shows that the efficiency of this method has been improved approximately 20 % over the

original iterative LOD-FDTD method.
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[ . Introduction

The finite-difference time-domain(FDTD) method is
widely used to solve electromagnetic problems due to its
low computational complexity and easy implementation

! However, certain types of problems require a small
grid size, bringing about a large Courant-Friedrichs-Le-
wy(CFL) number. To overcome the CFL condition, the
ADI-FDTD method has been a[?]plied to the discrete
scheme of Maxwell’s equations . More recently, the
LOD-FDTD scheme has been applied to another uncon-
ditionally stable method, which provides simple imple-
mentation and reduces the computational time™"!. How-
ever, the ADI-FDTD and LOD-FDTD schemes generate
a large numerical dispersion error due to the truncation
term in their two-step factorization”. The iterative sche-
me has been used to reduce the splitting error associated
with the ADI and LOD-FDTD discrete formulas . In
[7], the error vector between the Crank-Nicolson FDTD
(CN-FDTD) and ADI-FDTD schemes has been applied
to obtain a more efficient iterative version of the ADI-
FDTD method.

In this paper, we propose a new 2-D iterative LOD-
FDTD scheme using the error vector between the CN-
FDTD and LOD-FDTD methods. The proposed scheme
has a simpler discrete formulation and reduces the com-
putational time while maintaining the same accuracy of
the numerical results.

II. Derivation of New LOD-FDTD Method

The 2-D Maxwell’s equations of the TEz case can be
written as the following matrix system divided into two
matrices of x and y:

o . .
Eu—Au+Bu, (1)
where
-ocle 0 —(?— 0 0 0
£0y 5
A=| 0 0 0 |,B=|0 -c/le ——
5 £0x
— 0 0 0 _i 0
HOy s

and i=[E, E, H.].

Replacing the time derivative of equation (1) with its
corresponding difference operation generates the follow-
ing CN-FDTD equation:

[I—EA—QB}?”“ :[I+£A+£BJQ",
2 2 272 2)

where I denotes an identity matrix. The two sub-step
LOD-FDTD procedures are given by

At L. At |,
|:I_7A:|uLOg2 =[I+7A}u
A -
{I—%B}Z{g}) - [I+§B}uzolgz,

—ptl/2 . . ) .
where ngD is an intermediate solution. To reduce the

(3a)

(3b)
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splitting error, the iterative LOD-FDTD scheme has

been introduced [1], and it has two iterative processing
steps with respect to &:

2
[I___A}amlz_ I+£A it At AB(-nH amz)
2 2 4

1-80p iz = 1480 p gz _ A
2 2

(42)

2
TBA(u"” RERTIY (4b)

This method is less costly than the iterative ADI-
FDTD method due to the reduced number of arithmetic
operations, and the same numerical accuracy is main-
tained [1]. In this paper, a new iterative LOD-FDTD
scheme for 2D Maxwell’s equations is introduced and
shown to be more efficient than the original iterative
LOD-FDTD scheme. For each (n+I)th time step, we
first solve ﬁ;’g}) from the LOD-FDTD equation, and the

equations of (3) can be written equivalently as

At At —n+
[I“?A:H:I *7Bj|uL01D

At At Af?
I+—B I+—A 4" BA - AB)#i™?
[ }[W }' e ST’ (s

where ;" is the solution in the previous time step. To

investigate the error between the LOD-FDTD and CN-
FDTD schemes, we redescribe the linear system CN-
FDTD (2), including the LOD-FDTD equation and the

temporal second-order spatial derivative terms, giving us
the following:

[I—EAMI—EB};"”
2 2

:[I+£BMI+£A}Z”+A—ﬁABﬁ”“7A—I2BAL7”‘
2 2 4 4 (6)

Since LOD-FDTD solves (3) instead of (6), a splitting
error depending on the truncation error terms occurs.
The truncation error is related to the terms of the spatial
derivatives with the second-order time step size factor
A%, ie., A; (BA-AB)iL2, tZABﬁ"’l, and TBA‘” The

iterative scheme efficiently reduces the splitting error in
ADI-FDTD and LOD-FDTD". To apply the iterative

n+l —ntl
LOD

that describes the error difference between the LOD-
FDTD and CN-FDTD schemes. After sub-tracting (5)
from (6), we obtain the following equation related to

scheme, we first define a new vector g"!' = u

—n+l,

e
M —n+l Nen+1 +bn+l (7)

where M=[1-(A1/2)A][I-(Ar/2)B], N=(Ar*/4)AB, and b™' =
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(AP | H)AB(i, +il5y )~ (A 1 BAGE " +d"). Here, M—N
is a splitting of the matrix (I—(Jt/2)A—(4t/2)B). To
apply the iterative scheme to etror vector equation (7),

we highlight the iterative nature of equation (7):
é]::#l] Nﬂnﬂ Eﬂﬂ , (8)

where the subscript £ denotes the kth iterative solutlon
. If M is nonsingular and the spectral radius of M 'N

1
is less than one, then iterate &;*'converges into g"*

for any initial guess[ | The convergence of iterative
equation (8) can be proved by a method similar to that
of [7]. The solution "' for each time step n+I is

1
=~ e;:az P Uy LOD after the iterative exe-

given by 4"
cution of (8). If the LOD concept is applied to im-
plement this iterative solver, the system in (8) can be

divided into two steps,

Aty Lgm AL ppann (AT g e
{I—EA} v ABek‘+TAB Ui + iy (9a)

At | L A e |
I-=B|&"' =" - —BA +i
{ ) } kol 1 Gilop )’ (9b)

mp _tmp

H . .
where €™ =(e;”,e]”,e”) denotes an intermediate

solution. Equations (9a) and (9b) resemble the original
iterative scheme because they contain the common spa-
tial second-order terms in each time sub-step. To re-
cover (8) from the two-step implementation in (9), we
use the matrix multiplication of ABA=0 in the 2D TE:
case.

In the first sub-step (n+1/2), (9a) can be expanded
into the following:

2 2
0
(] + O-Atjetmp At a Imp + At en+1

2 ) 2e 6y “ deu Oxdy

At 8~ ( i+l n+l/2)

¥,LOD »,.LOD

4y ooy (10a)

e =0 (10b)
mp _ﬂiem’p

T 2uody T, (10¢)

and in the second sub-step (n+[), we obtain the fo-
llowing equations from (9b):

ntl  _ _mmp

k¥l T € (l 1a)
At + ", At a n+
H'U— e;klu = e;, ’ ___e;,kln
2¢e 2e Ox

AP ( w12 n)
heut oxdy xrop T L

e

(11b)
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e:,;i1 = ;mp —_Aiie;;cln
2p 0x . (11c)

In each iterative sub-step, the performance of solving
the equation requires one implicit tridiagonal matrix
solver and one explicit update.

The whole procedure of this scheme is illustrated in
Fig. 1. Note that e;mp is always zero and g"*! is zero
on the boundary of a domain, which simplifies the tri-
diagonal matrix in comparison to the original iterative
scheme.

Moreover, Table 1 illustrates that the number of ari-
thmetic operations on the right side of each sub-step eg-
uation is less than the original iterative LOD-FDTD,
leading to a reduction of CPU time for computational
executions.

. Numerical Implementations

As a comparative study of numerical error over the
ADI-FDTD method, two 2-m-long parallel conducting
plates with a separation distance of 0.02 m in free space
surrounded by a perfect magnetic conductor(PMC) are
investigated. The grid sizes are Ah=Ax=Ay=0.02 m in
the x and y directions. The numerical experiment is
conducted with a 750-kHz raised cosine, which held
constant after reaching its maximum of 1 V. In the
region between the plates (4 m<x<6 m), the field am-

Given Initial Guess #”

Solve LOD-ADI (3). Find @75,

Solve iterative scheme (8). Find 5;;,::&

:

soatl _ oradl - ut]
U  =€sar+tHop

Fig. 1. The proposed iterative method.

Table 1. Number of arithmetic operations.

plitude is constant. Unlike the original iterative LOD-
FDTD, execution of the iterative process will be con-
ducted in a different way because of the convergent
speed of iterative equation (9). If the iteration number is
small, then solution &' of (9) is large, leading to a
divergence of 7;"*'. Thus, the iteration number needs to
be sufficiently large. Since good agreement between the
iterative LOD-FDTD and iterative ADI-FDTD has been
previously observed and described by K. Jungm, we
investigate the agreement between the proposed iterative
LOD-FDTD and iterative ADI-FDTD.

The 72 norm ”77,;’ " of e;',k for each time step n and

iterative step k is defined as

= \/lee;k B e;,k—l|2 , (12)

g . . . . .
where €,0 is an initial guess. Since the iterative eq-

M

uation of (7) converges, the norm “77,? || goes to zero as

8 n
k-0 We use ”m “
number for convergence of the iterative scheme. The

to determine the iteration

iterative step is executed until the norm ||77Z|| arrives at

a sufficiently small value. The numerical implementation
of (9) in Fortran can be simply expressed as follows:

do while (|

n; | .gt. LIMIT(n))

execute (9)
calculate “77,:’ ”

k=k+1
end while.

Here LIMIT(n) is a lower limit for interrupting the
while loop, and is related to the previous limit value
77;;;:,1 because of the stability of the iterative scheme.
Thus, a numerical example of this chapter takes LIMIT
(n) as a value similar to 77;;:11 . The total iteration
number is obtained by summing every final & for each
time step ». The iteration number of iterative ADI-FD-
TD is calculated by dividing the total iteration num-
ber of the new iterative LOD-FDTD by the final n.

Implicit Explicit Total
Method
M/D A/S M/D A/S M/D A/S
Original LOD 4 12 2 8 6 20
New LOD 2 14 2 3 4 17

M/D: multiplication/division, A/S: addition/subtraction.
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The CFL number is given as s =c¢,Af/Ah where ¢, is

the speed of light in a vacuum. The L: relative error
norm for E, along the x-axis is defined as follows:

’ (13)

where £,is a measured field at y=2 where the upper
plate is located, and E;gf is a reference field with a
value of 1 at the feeding plate and O at the other area.

Fig. 2 shows the £, field along the x-axis by the
new iterative LOD-FDTD and iterative ADI-FDTD me-
thod with the same total iteration number. This illu-
strates that the new iterative LOD-FDTD reduces the

splitting error in a manner similar to the original LOD-
FDTD case.

LOD (s=3}

_— New Iter. LOD {s=3)
Iter. ADI {s=3)

LOD (s=10)

Now Iter. LGD {s=10}
Iter. ADI {s=10}

0.8

0.6 4

E, (V/im)

0.4 1

0.2

0.0 <%

Position along the x-axis [m]

Fig. 2. E, along the x-axis calculated by LOD-FDTD, the
proposed iterative LOD-FDTD method, and itera-
tive ADI-FDTD method with the same total ite-
ration number.

40 -

L, Norm of Error (%)

3 6 S 12 15
Courant Number

Fig. 3. L, norm of the error of the new iterative LOD-
FDTD method and the iterative ADI-FDTD me-
thod for different courant number s.

Fig. 3 shows that the L2 relative error norm for Ey
along the x-axis of the new iterative LOD-FDTD me-
thod agrees with the iterative ADI-FDTD method with
the same total iteration number.

V. Conclusions

A new iterative LOD-FDTD method has been in-
troduced using an error vector between the CN-FDTD
and LOD-FDTD. A numerical example shows that the
new iterative LOD-FDTD scheme efficiently reduces the
splitting error in a manner similar to that of the original
iterative LOD-FDTD scheme. The new iterative LOD-
FDTD scheme uses a simpler numerical discrete formula
compared with the original iterative LOD-FDTD, and
due to the reduced number of arithmetic operations, the
computational time is lower than that of the original
iterative LOD-FDTD.

This work was supported by the IT R&D program
of MKE/IITA, Korea, under contract No. 2008-F-
050-01.

References

[11 K. Y. Jung, F. L. Teixeira, "An iterative uncon-
ditionally stable LOD-FDTD method", IEEE Micro-
wave and Wireless Components Lett., vol. 18, no. 2,
pp. 76-78, Feb. 2008.

[2] Kane Yee, "Numerical solution of initial boundary
value problems involving Maxwell’s equations in
isotropic media", IEEE Trans. Ant. Propag., vol. 14,
Issue 3, pp. 302-307, May 1966.

[3] T. Namiki, "A new FDTD algorithm based on alter-
nating-direction implicit method", IEEE Trans. Mi-
crowave Theory Tech., vol. 47, no. 10, pp. 2003-
2007, Oct. 1999.

[4] J. Shibayama, M. Muraki, J. Yamauchi, and H. Na-
kno, "Efficient implicit FDTD algorithm based on
locally one-dimensional scheme", Electron. Lett.,
vol. 41, no. 19, pp. 1046-1047, Sep. 2005.

[5] S. G. Garcia, T. W. Lee, and S. C. Hagness, "On
the accuracy of the ADI-FDTD method", IEEE An-
tennas and Wireless Propagation Lett., vol. 1, pp.
31-34, 2002.

[6] S. Wang, F. L. Teixeria, and J. Chen, "An iterative
ADI-FDTD with reduced splitting error", IEEE Mi-
crowave and Wireless Components Lett., vol. 15, no.
2, pp. 92-94, Feb. 2005.

[7]1 K. Kong, J. Kim, and S. Park, "Reduced splitting
error in the ADI-FDTD method using iterative me-

15



JOURNAL OF THE KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE, VOL. 9, NO. 1, MAR. 2009

thod", Microw. Opt. Tech. Lett., vol. 50, no. 8, pp.
2200-2203, Aug. 2008.

Ki-Bok Kong

received the B.S. degree from Kyung-
Pook National University, in 1992, and
the M.S and Ph.D. degree from Korea
Advanced Institute of Science and Te-
chnology, Daejeon, in 1999 and 2003,
respectively, all in applied mathematics.
Since 2004, he has been a research pro-
fessor with IT Convergence Campus of
Korea Advanced Institute of Science and Technology, Dae-
jeon, Korea. His research interests are the partial differential
equations and the computational electromagnetics using finite
difference time domain method.

Myung-Hun Jeong

received the B.E. degree in electronics
from Chungnam National University, Dae-
jeon, Korea, in 2008 and is currently
working toward the M.S. degree in elec-
trical engineering from IT Convergence
Campus of Korea Advanced Institute of
Science and Technology, Daejeon, Korea.
His main research interest is RF techno-
logy for wireless communications and biomedical applica-
tions.

16

[8] G. H. Golub, C. F. Van Loan, Matrix Computations,
3 ed., The Johns Hopkins Univ. Press, 1996.

Hyung Soo Lee

i received the B.E. degree in electronics
from Kyungpook National University,
Taegu, Korea, in 1980, the M.S. degree
in electronic computation engineering fi-
om the Yonsei University, Seoul, Korea,
in 1986, and the Ph.D. degree in infor-
mation and communication engineering
from Sungkyunkwan University, Seoul,
Korea, in 1996. From 1983, he is a Research Engineer with
Electronics and Telecommunications Research Institute, Dae-
jeon, Korea. His main research interest is RF technology for
WBAN, WPAN applications.

Seong -Ook Park

received the B.S. degree from Kyung-
Pook National University, in 1987, the
M.S. degree from Korea Advanced Insti-
tute of Science and Technology, Seoul, in
1989, and the Ph.D. degree from Arizona
State University, Tempe, in 1997, all in
electrical engineering. From March 1989
to August 1993, he was a Research En-
gineer with Korea Telecom, Daejeon, working with microwave
systems and networks. He later joined the Telecommunication
Research Center, Arizona State University, until September
1997. Since October 1997, he has been with IT Convergence
Campus of Korea Advanced Institute of Science and Tech-
nology, Daejeon, as an Professor. His research interests inclu-
de mobile handset antenna, and analytical and numerical tech-
niques in the area of electromagnetics.



