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A FINITE DIFFERENCE/FINITE VOLUME METHOD FOR

SOLVING THE FRACTIONAL DIFFUSION WAVE EQUATION

Yinan Sun and Tie Zhang

Abstract. In this paper, we present and analyze a fully discrete nu-

merical method for solving the time-fractional diffusion wave equation:

∂βt u − div(a∇u) = f , 1 < β < 2. We first construct a difference for-

mula to approximate ∂βt u by using an interpolation of derivative type.

The truncation error of this formula is of O(4t2+δ−β)-order if function

u(t) ∈ C2,δ[0, T ] where 0 ≤ δ ≤ 1 is the Hölder continuity index. This

error order can come up to O(4t3−β) if u(t) ∈ C3[0, T ]. Then, in com-
binination with the linear finite volume discretization on spatial domain,

we give a fully discrete scheme for the fractional wave equation. We prove

that the fully discrete scheme is unconditionally stable and the discrete
solution admits the optimal error estimates in the H1-norm and L2-norm,

respectively. Numerical examples are provided to verify the effectiveness

of the proposed numerical method.

1. Introduction

Fractional partial differential equations provide a nature framework for the
study of a variety physics models related to nonlocality and spatial hetero-
geneity, see e.g., [1, 2, 8, 16] and the references therein. At present, many nu-
merical methods have been proposed for solving time-fractional diffusion and
diffusion wave equations. These numerical methods are basically to combine
finite difference discretization for time fractional derivative with various types
of spatial discretization methods, for example, the finite difference method
[4,13,15,19–22], finite element method [5–7,12,17,23,26], finite volume method
[25] and spectral method [10], collocation method [9], wavelet method [14,18],
and so on. However, few finite volume methods are presented for the fractional
diffusion wave equations.

Received June 19, 2019; Revised December 24, 2020; Accepted February 15, 2021.
2010 Mathematics Subject Classification. Primary 65M60, 65N30, 65N15.
Key words and phrases. Fractional diffusion wave equations, finite difference/finite vol-

ume method, unconditional stability, optimal error estimate.
This work was supported by the State Key Laboratory of Synthetical Automation for

Process Industries Fundamental Research Funds, No. 2013ZCX02.

c©2021 Korean Mathematical Society

553



554 Y. SUN AND T. ZHANG

In this paper, we present and analize a finite difference/finite volume method
for solving the fractional diffusion wave equation:

(1.1) ∂βt u− div(a(x)∇u) = f(t, x), 1 < β < 2.

We first construct a difference formula to discretize the time-fractional deriv-
ative ∂βt u(t) with 1 < β < 2. This difference formula is established by using
an interpolation of derivative type to approximate the integrand u′′(t). We
show that the truncation error of this formula is of O(4t2+δ−β)-order if func-
tion u(t) ∈ C2,δ[0, T ] where 0 ≤ δ ≤ 1 is the Hölder continuity index. It is well

known that for the difference formula discretizing ∂βt u(t), the truncation error is
of O(4t3−β)-order if u ∈ C3[0, T ]. Noting that when u ∈ C3[0, T ] ⊂ C2,1[0, T ],
our error order also reaches O(4t3−β). So our difference formula has a more
delicate error boundness for function u(t) with lower smoothness. Then, we
further consider the spatial discretization by using the linear finite volume
method on space domain. Thus, a fully discrete numerical scheme is presented
to solve the fractional wave equation (1.1). We prove that this fully discrete
scheme is unconditionally stable and the discrete solution admits the optimal
error estimates in the H1-norm and L2-norm, respectively.

This paper is organized as follows. In Section 2, we establish the difference
formula and give its truncation error bound. In Section 3, we propose the
fully discrete finite difference/finite volume scheme and prove the unconditional
stability. Section 4 is contributed to the error analysis. In Section 5, numerical
experiments are provided to test the effictiveness of the proposed difference
formula and fully discrete method.

Throughout this paper, for a non-negative integer m, we adopt the notation
Hm(Ω) to denote the usual Sobolev space on domain Ω equipped with the
norm ‖ · ‖m. The notations (·, ·) and ‖ · ‖ denote the inner product and norm in
the L2 space, respectively. We use the letter C to represent a generic positive
constant, independent of the mesh sizes 4t and h.

2. The difference formula and its error bound

In this section, we establish the difference formula to approximate the frac-

tional derivative ∂βt u and give the rigorous error bound for function u(t) with
limited smoothness.

For 1 < β < 2, the Caputo type fractional derivative of order β with respect
to t is as follows

(2.1) ∂βt u(t) =
1

Γ(2− β)

∫ t

0

(t− τ)1−βu′′(τ)dτ, 0 < t ≤ T,

where Γ(·) denotes the Gamma function.

Let us consider the discretization of ∂βt u(t). Let 0 = t0 < t1 < · · · < tN = T
be an equidistant partition of time interval [0, T ] with step size 4t = T/N for
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some positive integer N . At node tn, we have from (2.1) that

∂βt u(tn) =
1

Γ(2− β)

n∑
k=1

∫ tk

tk−1

(tn − τ)1−βu′′(τ)dτ.(2.2)

For a mesh function wn on node set {tn}, we introduce the notations:

δtw
n =

1

4t
(wn − wn−1), wn−

1
2 =

1

2
(wn + wn−1),

and set wn = w(tn) if w(t) is a continuous function on [0, T ]. Also we introduce
the piecewise quadratic polynomial function which is a special approximation
to u(t):

(2.3) H2,ku(t)=
(t−tk−1)2

24t
u′(tk)− (tk−t)2

24t
u′(tk−1), t ∈ (tk−1, tk), 1≤k≤ N.

Obviously,

H ′2,ku(t) =
t− tk−1
4t

u′(tk) +
tk − t
4t

u′(tk−1), t ∈ (tk−1, tk), k = 1, . . . , N,(2.4)

H ′′2,ku(t) = δkt u
′(tk) =

u′(tk)− u′(tk−1)

4t
, t ∈ (tk−1, tk), k = 1, . . . , N.(2.5)

Replacing u(τ) by H2,ku(τ) in (2.2), we obtain from (2.5) that

(2.6) ∂βt u(tn) =
1

Γ(2− β)

n∑
k=1

∫ tk

tk−1

(tn − τ)1−βδtu
′(tk)dτ +Rn1 (u),

where the error function

(2.7) Rn1 (u) =
1

Γ(2− β)

n∑
k=1

∫ tk

tk−1

(tn − τ)1−β(u′′(τ)− δtu′(tk))dτ.

Set

(2.8) bk = (k + 1)2−β − k2−β , k = 0, 1, . . . , Γβ4 = Γ(3− β)4tβ−1.

Since∫ tk

tk−1

(tn − τ)1−βdτ =
1

2− β
(
(tn − tk−1)2−β − (tn − tk)2−β

)
=
4t2−β

2− β
bn−k,

then, it follows from (2.6) that

∂βt u(tn) =
1

Γβ4

n∑
k=1

bn−k
(
u′(tk)− u′(tk−1)

)
+Rn1 (u).(2.9)

We need to further discretize the derivative in (2.9). Using the summation by
parts formula:

(2.10)

n∑
k=1

vk(wk − wk−1) =

n−1∑
k=1

(vk − vk+1)wk + vnwn − v1w0,
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we obtain from (2.9)

∂βt u(tn) =
1

Γβ4

[ n−1∑
k=1

(bn−k − bn−k−1)u′(tk) + b0u
′(tn)− bn−1u′(t0)

]
(2.11)

+Rn1 (u).

Here and afterwards, we consider the sum to be equal to zero if the upper
summation index is less than the lower one. Now, let wn = u′(tn), it follows
from (2.11) that

∂βt u
n− 1

2 =
∂βt u(tn) + ∂βt u(tn−1)

2

=
1

Γβ4

[wn + wn−1

2
+

n−1∑
k=1

(
bn−k − bn−k−1

)wk + wk−1

2
− bn−1w0

]
+
Rn1 (u) +Rn−11 (u)

2
, wn = u′(tn), n = 1, 2, . . . .(2.12)

Using the Taylor expansion:

u(tk) = u(tk−1) +4tu′(tk−1) +

∫ tk

tk−1

u′′(s)(tk − s)ds,

u(tk−1) = u(tk)−4tu′(tk) +

∫ tk−1

tk

u′′(s)(tk−1 − s)ds,

we obtain

(2.13)
u′(tk) + u′(tk−1)

2
=
u(tk)− u(tk−1)

4t
+Rk2(u),

where the error remainder

(2.14) Rk2(u) =
1

24t

[ ∫ tk

tk−1

u′′(s)(s− tk−1)ds−
∫ tk

tk−1

u′′(s)(tk − s)ds
]
.

Substituting (2.13) into (2.12), we derive the approximation to the fractional

derivative (∂βt u(tn) + ∂βt u(tn−1))/2 as follows

(2.15) ∂βt u
n− 1

2 = 4βnun−
1
2 + rn(u),

where the difference formula

4βnun−
1
2 =

1

Γβ4

[
δtu

n +

n−1∑
k=1

(
bn−k − bn−k−1

)
δtu

k − bn−1u′(0)
]
,(2.16)

with Γβ4 = Γ(3− β)4tβ−1 and the truncation error

rn(u) =
1

Γβ4

[
Rn2 (u)+

n−1∑
k=1

(
bn−k − bn−k−1

)
Rk2(u)

]
+
Rn1 (u)+Rn−11 (u)

2
.(2.17)

Below we estimate the truncation error rn(u).
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Let H2,ku be the piecewise quadratic polynomial given in (2.3) and error
function RH,k(t) = u(t)−H2,ku(t), 1 ≤ k ≤ N . From (2.4) we see that H ′2,ku

is the linear interpolation of derivative function u′(t) on [tk−1, tk]. Then, we
have from the interpolation error formula of Newton type,

(2.18)
u′(t) = H ′2,ku(t) +R′H,k(t),

R′H,k(t) = (t− tk−1)(t− tk)u′[tk−1, tk, t], t ∈ (tk−1, tk),

where the two-order difference quotient

u′[tk−1, tk, t] =
(
u′[tk, t]− u′[tk−1, tk]

)
/(t− tk−1),

u′[ti, tj ] =
(
u′(tj)− u′(ti)

)
/(tj − ti).

We introduce the Hölder continuous function space with indexes m ≥ 0 and
0 ≤ δ ≤ 1,

C0,δ[a, b] = {u(t) ∈ C(0)(a, b) : |u|C0,δ[a,b] <∞},

Cm,δ[a, b] = {u(t) ∈ C(m−1)[a, b]
⋂
C(m)(a, b) : |u|Cm,δ[a,b] <∞}, m ≥ 1,

where the semi-norm

|u|Cm,δ[a,b] = sup
t1, t2∈(a,b), t1 6=t2

|u(m)(t1)− u(m)(t2)|
|t1 − t2|δ

.

Lemma 2.1. Let u ∈ C2,δ[0, T ] and error function RH,k(t) = u(t)−H2,ku(t),
1 ≤ k ≤ N . Then, it holds

|R′H,k(t)| ≤ 4t1+δ|u|C2,δ[tk−1,tk], |R
′′
H,k(t)| ≤ 4tδ|u|C2,δ[tk−1,tk], t ∈ (tk−1, tk).

Proof. First, from (2.18) we have

|R′H,k(t)| = |(t− tk)(u′[tk, t]− u′[tk−1, tk])|
≤ 4t|u′′(ξk)− u′′(ηk)|

≤ 4t1+δ|u′′(ξk)− u′′(ηk)|/|ξk − ηk|δ

≤ 4t1+δ|u|C2,δ[tk−1,tk], t ∈ (tk−1, tk).

Next, it follows from (2.6)

|R′′H,k(t)| =
∣∣∣∣u′′(t)− u(tk)− u(tk−1)

4t

∣∣∣∣
= |u′′(t)− u′′(ξk)| ≤ 4tδ|u|C2,δ[tk−1,tk], t ∈ (tk−1, tk).

The proof is completed. �

Lemma 2.2. For 1 < β < 2, series bk = (k+ 1)2−β − k2−β has the properties:

(2.19) 1 = b0 > b1 > · · · > bk−1 > bk > (2− β)(k + 1)1−β , k = 1, 2, . . . .
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Proof. Since

bk = (k + 1)2−β − k2−β = (2− β)

∫ k+1

k

t1−βdt,

we have b0 = 1,

2− β
(k + 1)β−1

< bk <
2− β
kβ−1

, k = 1, 2, . . . .

This implies the conclusion of Lemma 2.2. �

Now, we can give the error bound of the difference formula 4βnun−
1
2 .

Theorem 2.1. For function u(t) ∈ C2,δ[0, tn], 0 ≤ δ ≤ 1, it holds

(2.20) |rn(u)| = |∂βt un−
1
2 −4βnun−

1
2 | ≤ 34t2+δ−β

Γ(3− β)
|u|C2,δ[0, tn], 1 ≤ n ≤ N.

Proof. Let rn(u) be the truncation error shown in (2.17) in which Rn1 and Rn2
are given by (2.7) and (2.14), respectively. We first estimate Rn1 . From (2.7)
and integration by parts, we obtain (noting that R′k(tk−1) = R′k(tk) = 0)

Rn1 (u)

=
1

Γ(2− β)

n∑
k=1

∫ tk

tk−1

(tn − τ)1−βR′′H,k(τ)dτ

=
1

Γ(2− β)

( n−1∑
k=1

∫ tk

tk−1

(tn − τ)1−βR′′H,k(τ)dτ +

∫ tn

tn−1

(tn − τ)1−βR′′H,n(τ)dτ
)

=
1

Γ(2−β)

( n−1∑
k=1

∫ tk

tk−1

(1−β)(tn−τ)−βR′H,k(τ)dτ+

∫ tn

tn−1

(tn−τ)1−βR′′H,n(τ)dτ
)
.

Hence, it follows from Lemma 2.1 that

|Rn1 | ≤
1

Γ(2− β)

(∫ tn−1

0

(β − 1)4t1+δ(tn − τ)−βdτ

+4tδ
∫ tn

tn−1

(tn − τ)1−βdτ
)
|u|C2,δ[0, tn]

=
4tδ

Γ(2− β)

(
4t(4t1−β − t1−βn ) +

1

2− β
4t2−β

)
|u|C2,δ[0, tn]

≤ 4t
2+δ−β

Γ(2− β)

(
1 +

1

2− β

)
|u|C2,δ[0, tn] =

3− β
Γ(3− β)

4t2+δ−β |u|C1,δ[0, tn] .

Next, we estimate the first term in (2.17). From (2.14) and the mean value
theorem, we have

Rk2(u) =
1

24t
[
u′′(ξk)

4t2

2
− u′′(ηk)

4t2

2

]
≤ 4t

1+δ

4
|u|C2,δ[tk−1, tk], 1 ≤ k ≤ N.
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Hence, by using Lemma 2.2, we obtain

1

Γβ4

[
Rn2 (u) +

n−1∑
k=1

(
bn−k − bn−k−1

)
Rk2(u)

]

≤ 1

Γβ4

(
1 + b0 − bn−1)

4t1+δ

4
|u|C2,δ[0, tn] ≤

4t2+δ−β

2Γ(3− β)
|u|C2,δ[0, tn].

Substituting this estimate into (2.17) and combining the estimate of Rn1 , the
proof is completed. �

Note that space C2[0, T ] ⊂ C2,0[0, T ] and C3[0, T ] ⊂ C2,1[0, T ], then from
Theorem 2.1, we also obtain the following result

|rn(u)| ≤ 34tm−β

Γ(3− β)
‖u‖Cm[0,T ], m = 2, 3 .

We can further reduce the regularity requirement for function u(t) in Theo-
rem 2.1. In fact, from the proof of Theorem 2.1, we see that if u(t) is piecewise
smooth on (0, t∗)

⋃
(t∗, T ) and t∗ is a mesh point, then the argument in Theo-

rem 2.1 maintains to hold. Therefore, we have the following conclusion.

Corollary 2.1 If function u(t) ∈ C2,δ[0, t∗]
⋂
C2,δ[t∗, T ] and t∗ = tk is a

mesh point of the difference formula, then it holds

|rn(u)| ≤ 34t2+δ−β

Γ(3− β)

(
|u|C2,δ[0,t∗] + |u|C2,δ[t∗,T ]

)
, 1 ≤ n ≤ N.

Remark 2.1. This difference formula presented in this paper is completely
similar to that given in [20]. However, we give here a new error bound with
respect to function u(t) with lower smoothness.

3. The fully discrete method for the fractional wave problem

In this section, based on the difference formula given in Section 2, we present
a fully discrete finite difference/finite volume method for solving the fractional
diffusion wave equation and carry out the stability analysis.

Consider the initial-boundary value problem of fractional diffusion wave
equation:  ∂βt u− div(a(x)∇u) = f(t, x) in Ω, 0 < t ≤ T, 1 < β < 2,

u = 0 on ∂Ω, 0 < t ≤ T,
u(0, x) = φ(x), ut(0, x) = ψ(x), x ∈ Ω,

(3.1)

where Ω ⊂ Rd (2 ≤ d ≤ 3) is a bounded domain with boundary ∂Ω. As usual,
we assume that there exist positive constants a0 and a1 such that a0 ≤ a(x) ≤
a1, x ∈ Ω.

We first introduce the finite volume discretization on spatial domain, see
[25] for details. Let Th =

⋃
{K} be a regular triangulation of domain Ω and

T ∗h =
⋃
{K∗p} be the accompanying dual partition. On triangulations Th and
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T ∗h , we introduce the piecewise linear trial function space Sh and the piecewise
constant test function space S∗h, respectively. Then we introduce the interpo-
lation operator γh : uh ∈ Sh → γhuh ∈ S∗h such that

(3.2) γhuh =
∑
P∈Nh

uh(P )χp, ∀uh ∈ Sh,

where χp is the characteristic function of the dual element K∗P and Nh is the
set of all mesh points of Th.

Now we define the semi-discrete finite volume approximation of problem
(3.1) by finding uh(t) : (0, T ]→ Sh such that{

(∂βt uh, γhvh) + ah(uh, γhvh) = (f, γhvh), ∀ vh ∈ Sh, 0 < t ≤ T,
uh(0) ∈ Sh,

(3.3)

where the bilinear form

(3.4) ah(u, γhvh) = −
∑

K∗P∈T∗h

∫
∂K∗P

n · (a∇u)γvhds, u ∈ H1(Ω), vh ∈ Sh.

It is well known (see [24], for example) that for h small, there exist positive
constants C1 and C2 such that for uh, vh ∈ Sh,

C1‖∇uh‖2 ≤ ah(uh, γhuh), |ah(uh, γhvh)| ≤ C2‖∇uh‖ ‖∇vh‖ .(3.5)

Based on the semi-discrete scheme (3.3), we define the fully discrete finite
difference/finite volume approximation of the problem (3.1) by finding unh ∈ Sh
such that {

(4βnu
n− 1

2

h , γhvh) + ah(u
n− 1

2

h , γhvh) = (fn−
1
2 , γhvh),

u0h ∈ Sh,∀ vh ∈ Sh, 0 < t ≤ T,
(3.6)

where u
n− 1

2

h = (unh + un−1h )/2 and the difference formula (see (2.16))

(3.7) 4βnun−
1
2 =

1

Γβ4

[
δtu

n +

n−1∑
k=1

(
bn−k − bn−k−1

)
δtu

k − bn−1ψ

]
,

where δtu
n = (un − un−1)/4t and Γβ4 = Γ(3− β)4tβ−1. Using (3.7), discrete

scheme (3.6) also can be written as

(δtu
n
h, γhvh) + Γβ4ah(u

n− 1
2

h , γhvh)

=

n−1∑
k=1

(
bn−k−1 − bn−k

)
(δtu

k
h, γhvh) + bn−1(ψ, γhvh)

+Γβ4(fn−
1
2 , γhvh), vh ∈ Sh,

u0h ∈ Sh, n = 1, 2, . . . , N.

(3.8)

Below we discuss the stability. First we give a useful lemma.

Lemma 3.1 ([25]). For uh, vh ∈ Sh, it holds

(uh, γhvh) = (γhuh, vh),(3.9)
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5

12
‖uh‖2 ≤ (uh, γhuh) ≤ 4‖uh‖2,(3.10)

‖uh‖2∗ ≤ ‖γhuh‖2 ≤
12

5
‖uh‖2∗.(3.11)

According to Lemma 3.1, we can define the inner-product and norm on space
Sh:

(3.12) (uh, vh)∗ = (uh, γhvh), ‖uh‖2∗ = (uh, γhuh), uh, vh ∈ Sh.
Furthermore, introduce the energy norm (see (3.5)):

(3.13) ‖uh‖2A = ah(uh, γhuh), ‖uh‖A ≥ C‖∇uh‖, uh ∈ Sh.
Theorem 3.1. The solution unh of the discrete equation (3.6) uniquely exists
and satisfies the following stability estimate.

(3.14) ‖unh‖2A ≤ ‖u0h‖2A +
12

5

t2−βn

Γ(3− β)
‖ψ‖2 +

12

5
tβnΓ(2− β) max

1≤k≤n
‖fk− 1

2 ‖2.

Proof. Taking vh = δtu
n
h in (3.8) and using the Cauchy inequality and (3.11),

we have

‖δtunh‖2∗ +
Γβ4
24t

(‖unh‖2A − ‖un−1h ‖2A)

≤
n−1∑
k=1

(
bn−k−1 − bn−k

)1

2
(‖δtukh‖2∗ + ‖δtunh‖2∗)

+
bn−1

2

(
12

5
‖ψ‖2 + ‖δtunh‖2∗

)
+ Γβ4|(f

n− 1
2 , γhδtu

n
h)|.

Hence, noting that
∑n−1
k=1

(
bn−k−1 − bn−k

)
= 1− bn−1, it yields

‖δtunh‖2∗ +
Γβ4
4t

(‖unh‖2A − ‖un−1h ‖2A) ≤
n−1∑
k=1

(
bn−k−1 − bn−k

)
‖δtukh‖2∗

+
12

5
bn−1‖ψ‖2 + 2Γβ4|(f

n− 1
2 , γhδtu

n
h)|,

or

Γβ4
4t
‖unh‖2A +

n∑
k=1

bn−k‖δtukh‖2∗ ≤
Γβ4
4t
‖un−1h ‖2A +

n−1∑
k=1

bn−k−1‖δtukh‖2∗

+
12

5
bn−1‖ψ‖2 + 2Γβ4|(f

n− 1
2 , γhδtu

n
h)|.(3.15)

Set

F 0 =
Γβ4
4t
‖u0h‖2A, Fn =

Γβ4
4t
‖unh‖2A +

n∑
k=1

bn−k‖δtukh‖2∗.

Then, it follows from (3.15) that

Fn ≤ Fn−1 +
12

5
bn−1‖ψ‖2 + 2Γβ4|(f

n− 1
2 , γhδtu

n
h)|, n = 1, 2, . . . , N.



562 Y. SUN AND T. ZHANG

Summing, it yields

Γβ4
4t
‖unh‖2A +

n∑
k=1

bn−k‖δtukh‖2∗

≤
Γβ4
4t
‖u0h‖2A +

12

5

n∑
k=1

bk−1‖ψ‖2 + 2Γβ4|
n∑
k=1

(fk−
1
2 , γhδtu

k
h)|.

Hence, again using (3.11) and Cauchy inequality, we obtain

(3.16) ‖unh‖2A ≤ ‖u0h‖2A +
4t
Γβ4

12

5

n∑
k=1

bk−1‖ψ‖2 +
4t
Γβ4

n∑
k=1

12(Γβ4)2

5bn−k
‖fk− 1

2 ‖2.

From (2.8) and Lemma 2.2, we know that

n∑
k=1

bk−1 = n2−β , bn−k ≥ (2− β)(n− k + 1)1−β ≥ (2− β)n1−β , 1 < β < 2.

Hence, it follows from (3.16) that

‖unh‖2A ≤ ‖u0h‖2A +
12t2−βn

5Γ(3− β)
‖ψ‖2 +

12

5
tβnΓ(2− β) max

1≤k≤n
‖fk− 1

2 ‖2.

The proof is completed. �

4. Error analysis

Let u(t) be the solution of problem (3.1). From (3.1), we see that un = u(tn)
satisfies (also see [25])

(4.1) (4βnun−
1
2 , γhvh) + ah(un−

1
2 , γhvh) = (fn−

1
2 − rn(u), γhvh), ∀ vh ∈ Sh,

where rn(u) = ∂βt u
n−1/2 − 4βnun−1/2 is the truncation error. In order to do

the error analysis, we introduce the finite volume projection Vh : u ∈ H1
0 (Ω)→

Vhu ∈ Sh such that

(4.2) ah(u− Vhu, γhvh) = 0, ∀ vh ∈ Sh.

It is easy to see that Vhu just is the solution of the finite volume method for
the elliptic problem: −div(a(x)∇u) = f . Then, from the known result (see
[3, 11], for example), we have the error estimates:

(4.3) ‖u− Vhu‖ ≤ Ch2‖u‖3, ‖u− Vhu‖1 ≤ Ch‖u‖2.

Let u(t) and unh be the solutions of problems (3.1) and (3.6), respectively. We
decompose the error:

(4.4) u(tn)− unh = u(tn)− Vhu(tn) + Vhu(tn)− unh = ηn + θn.

From (4.2)-(4.3), we know that η(t) satisfies the error estimate:

(4.5) ‖∂st η(t)‖ ≤ Ch2‖∂st u(t)‖3, ‖∂st η(t)‖1 ≤ Ch‖∂st u(t)‖2, s = 0, 1, 2.
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Moreover, it follows from equations (4.1) and (4.2) that for vh ∈ Sh,

(4.6) (Vh4βnun−
1
2 , γhvh) + ah(Vhu

n− 1
2 , γhvh) = (fn−

1
2 + Sn − rn(u), γhvh),

where

(4.7) Sn = Vh4βnun−
1
2 −4βnun−

1
2 .

Lemma 4.1. Assume that u(t) and unh are the solutions of problems (3.1)
and (3.6), respectively, u(0), ψ ∈ H1

0 (Ω), utt ∈ H1
0 (Ω). Then, we have for

θn = Vhu
n − unh,

(4.8) ‖θn‖A ≤ ‖θ0‖A+C
(
t2−βn ‖ηt(0)‖+t2n max

0≤τ≤tn
‖ηtt(τ)‖+tβn max

1≤k≤n
‖rk(u)‖

)
.

In particular, if choosing the initial value u0h = Vhu(0), we have

(4.9) ‖θn‖A ≤ C
(
t2−βn ‖ηt(0)‖+ t2n max

0≤τ≤tn
‖ηtt(τ)‖+ tβn max

1≤k≤n
‖rk(u)‖

)
.

Proof. From equations (3.6) and (4.6), we have

(Vh4βnun−
1
2 −4βnu

n− 1
2

h , γhvh) + ah(θn−
1
2 , γhvh) = (Sn − rn(u), γhvh).

Hence, from (3.7), we obtain the equation satisfied by θn:

(4.10)

(δtθ
n, γhvh) + Γβ4ah(θn−

1
2 , γhvh)

=

n−1∑
k=1

(
bn−k−1 − bn−k

)
(δtθ

k, γhvh) + bn−1(Vhψ − ψ, γhvh)

+ Γβ4(Sn − rn(u), γhvh), vh ∈ Sh.

Comparing (4.10) with (3.8), similar to the stability argument in Theorem 3.1,
we can derive

‖θn‖2A ≤ ‖θ0‖2A +
12t2−βn

5Γ(3− β)
‖Vhψ − ψ‖2(4.11)

+
12

5
tβnΓ(2− β) max

1≤k≤n
‖Sk − rk(u)‖2

≤ ‖θ0‖2A + Ct2−βn ‖ηt(0)‖2 + Ctβn max
1≤k≤n

‖Sk − rk(u)‖2.

Hence, we only need to estimate ‖Sk‖ = ‖4βkuk−
1
2 − Vh4βkuk−

1
2 ‖. According

to the definition of 4βnun−
1
2 , we have

Sn =
1

Γβ4

[
δtη

n +
n−1∑
k=1

(bn−k − bn−k−1)δtη
k − bn−1ηt(0)

]
(4.12)

=
1

Γβ4

[
n∑
k=1

bn−kδtη
k −

n−1∑
k=1

bn−k−1δtη
k − bn−1ηt(0)

]
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=
1

Γβ4

[
n−1∑
k=1

bn−k−1(δtη
k+1 − δtηk) + bn−1δtη

1 − bn−1ηt(0)

]
.

By using the mean value theorem, we obtain

δtη
k+1 − δtηk = ηt(ξ

′)− ηt(ξ′′) ≤ 4t max
0≤τ≤tn

|ηtt(τ)|, ξ′, ξ′′ ∈ (tk−1, tk+1),

δtη
1 − ηt(0) = ηt(ξ)− ηt(0) ≤ 4t max

0≤τ≤t1
|ηtt(τ)|, ξ ∈ (0, t1).

Hence, it yields from (4.12) that

|Sn| ≤
1

Γβ4
4t max

0≤τ≤tn
|ηtt(τ)|

n−1∑
k=0

bn−k−1

=
1

Γβ4
4t max

0≤τ≤tn
|ηtt(τ)|n2−β =

t2−βn

Γ(3− β)
max

0≤τ≤tn
|ηtt(τ)|.

Substituting this into (4.11), estimate (4.8) is derived. When u0h = Vhu(0), it
holds that θ0 = Vhu(0)− u0h = 0. Then, estimate (4.9) follows from (4.8). �

Let X be a linear normed space and 0 < t∗ ≤ T . For the X-value function
u(t) : [0, t∗]→ X, we define the space

L∞(0, t∗;X) = {u(t) ∈ X : ‖u(t)‖L∞(0,t∗;X) = sup
0≤t≤t∗

‖u(t)‖X <∞}.

Similarly, we can define the space C2,δ([0, t∗];X) with the corresponding norm
‖ · ‖C2,δ([0,t∗];X).

Theorem 4.1. Assume that u(t) and unh are the solutions of problems (3.1)
and (3.6), respectively, u(0), ψ ∈ H1

0 (Ω)
⋂
H2(Ω), u ∈ C2,δ([0, T ];L2(Ω)), utt ∈

L∞(0, T ; H2(Ω)), and the initial approximation: ‖u0h − u(0)‖A ≤ Ch‖u(0)‖2.
Then, the following optimal H1-error estimate holds for n ≥ 1,

‖un − unh‖A ≤ C4t2+δ−β‖u‖C2,δ([0,tn];L2)(4.13)

+ Ch
(
‖u(0)‖2 + ‖ψ‖2 + ‖utt‖L∞(0, tn;H2)

)
.

Moreover, if uh(0) = Vhu(0) and ψ ∈ H3(Ω), utt ∈ L∞(0, T ; H3(Ω)), then the
following optimal L2-error estimate holds.

‖un − unh‖ ≤ C4t2+δ−β‖u‖C2,δ([0,tn];L2) + Ch2
(
‖ψ‖3 + ‖utt‖L∞(0, tn;H3)

)
.

Proof. From Theorem 2.1 and (4.5), we obtain

max
1≤k≤n

‖rk(u)‖ ≤ C4t2+δ−β‖u‖C2,δ([0,tn];L2),

‖η(t)‖1 + ‖ηt(0)‖1 + ‖ηtt(t)‖1 ≤ Ch(‖ψ‖2 + ‖utt(t)‖2),

‖η(t)‖+ ‖ηt(0)‖+ ‖ηtt(t)‖ ≤ Ch2(‖ψ‖3 + ‖utt(t)‖3).
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Combining these estimates with Lemma 4.1 and using the triangle inequality:
‖un − unh‖A ≤ ‖θn‖A + ‖ηn‖A, we can derive the conclusions of Theorem 4.1,
noting that ‖θn‖ ≤ C‖∇θn‖ ≤ C‖θn‖A. �

For the finite volume method, to obtain the optimal order L2-error estimate,
the H3-regularity requirement in (4.3) and Theorem 4.1 is necessary, see [3,11].

In Theorem 4.1, if u ∈ C3([0, T ];L2(Ω)), then we have that ‖un − unh‖ ≤
C(4t3−β + h2).

5. Numerical experiment

In this section, we use numerical examples to verify the convergence rates
given by Theorem 2.1, Corollary 2.1 and Theorem 4.1 for the difference formula
(2.16) and the fully discrete method (3.6), respectively.

To estimate the C2,δ-regularity, we first give a lemma.

Lemma 5.1. Let u(t) = tσ, 0 < σ < 1. Then, u(t) ∈ Cδ[a, b], ∀ 0 ≤ δ < σ.

Proof. Using the Hölder inequality with indexes p = 1/(1 − δ), q = 1/δ, it is
easy to see that for 0 ≤ δ < σ and t1, t2 ∈ (0, T ),

|u(t2)− u(t1)| = |tσ2 − tσ1 | = |σ
∫ t2

t1

tσ−1dt| ≤ σ
(∫ t2

t1

t(σ−1)pdt
) 1
p |t2 − t1|

1
q

= σλδ−1|tλ2 − tλ1 |1−δ|t2 − t1|δ, λ = (σ − δ)/(1− δ).

Therefore, we can conclude that u(t) ∈ Cδ[0, T ]. �

Example 1. In this example, we test the convergence rate given in Theorem
2.1 for function u(t) ∈ C2,δ[0, T ] (0 < δ < 1) by computing the error

E(N) = max
1≤n≤N

|rn(u)| = max
1≤n≤N

|∂βt un−
1
2 −4βnun−

1
2 |, tn = n4t, 1 < β < 2.

We take the test function

uδ(t) = t2+δ, ∂βt uδ(t) =
Γ(3 + δ)

Γ(3 + δ − β)
t2+δ−β , 0 < δ < 1, t ∈ [0, T ].

Since u′′δ (t) = (2 + δ)(1 + δ)tδ, according to Lemma 5.1, we can conclude that
uδ(t) ∈ C2, δ− [0, T ] where number δ− is such that δ − ε < δ− < δ,∀ ε > 0. In
this example, we set T = 1,4t = 1/N . For N = 2j , j = 2, 3, . . . , the numerical
convergence rate rc is computed by the formula rc = ln[E(N)/E(2N)]/ ln 2.
Table 5.1 gives the numerical results for different parameters β and δ, and the
theoretical convergence rate r∗ = 2 + δ−− β (see Theorem 2.1) also is listed in
the last column in Table 5.1. From the numerical results we observe that the
convergence rates rc and r∗ are almost uniform.

Example 2. In this example, we test the convergence rate given in Corollary
2.1 for piecewise smooth function. Take the test function:

uγ(t) =

{
1, 0 ≤ t ≤ 1/2,
(t− 1/2)2+γ + 1, 1/2 ≤ t ≤ 1, 0 < γ < 1
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Table 5.1. Error and convergence rate for uδ(t), N = 128.

β δ error Numer. rate 2 + δ− − β
β = 1.2 0.3 0.0010 1.100 1.1−

0.5 0.0006 1.300 1.3−
0.7 0.0003 1.500 1.5−
0.9 0.0002 1.700 1.7−

β = 1.4 0.3 0.0035 0.900 0.9−
0.5 0.0023 1.100 1.1−
0.7 0.0012 1.300 1.3−
0.9 0.0006 1.500 1.5−

β = 1.6 0.3 0.0117 0.700 0.7−
0.5 0.0076 0.900 0.9−
0.7 0.0042 1.100 1.1−
0.9 0.0024 1.300 1.3−

β = 1.8 0.3 0.0376 0.500 0.5−
0.5 0.0248 0.700 0.7−
0.7 0.0146 0.900 0.9−
0.9 0.0089 1.100 1.1−

and

∂βt uγ(t) =

 0, 0 ≤ t ≤ 1/2,
Γ(3 + γ)

Γ(3 + γ − β)
(t− 1/2)2+γ−β , 1/2 ≤ t ≤ 1, 1 < β < 2.

According to Lemma 5.1, it is easy to see that the piecewise smooth function
uγ(t) ∈ C1[0, 1]

⋂
C2,γ− [0, 1/2]

⋂
C2,γ− [1/2, 1] where γ− is such that γ − ε <

γ− < γ,∀ ε > 0. Then, according to Corollary 2.1, the theoretical convergence
rate of the difference formula for this function should be r∗ = 2 + γ− − β if
t∗ = 1/2 is a mesh point. Table 5.2 gives the numerical results for different
parameters β and γ. We see that the numerical convergence rate rc ≈ r∗.

Example 3. In this example, we test the convergence rate given in Theorem
4.1 for the finite difference/finite volume method (3.6).

Consider fractional diffusion wave equation (3.1) on domain Ω = [0, 1]2 with
the exact solution u(t, x) = (t3 + 1) sin(πx1) sin(πx2) and data a(x) = 1,

f(t, x) =

(
6t3−β

Γ(4− β)
+ 2π2(t3 + 1)

)
sin(πx1) sin(πx2).

We mainly examine the L2-error of the finite volume method on spatial do-
main. Therefore, we take the time step 4t small enough so that the dominant
numerical error comes from the finite volume method. Let eh = ‖u(T )−uh(T )‖
be the error on mesh Th at terminal time T . The numerical convergence rate
r with respect to mesh size h is computed by formula r = ln(eh/eh

2
)/ ln 2.

Numerical results are given in Table 5.3 for parameter β = 1.3 and 1.5. We
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Table 5.2. Error and convergence rate for piecewise smooth uγ(t), N = 128.

β γ error Numer. rate 2 + γ− − β
β = 1.1 0.3 0.0036 1.200 1.2−

0.5 0.0015 1.400 1.4−
0.9 0.0003 1.800 1.8−

β = 1.3 0.3 0.0105 1.000 1.0−
0.5 0.0045 1.200 1.2−
0.9 0.0008 1.600 1.6−

β = 1.6 0.3 0.0495 0.700 0.7−
0.5 0.0219 0.900 0.9−
0.9 0.0041 1.300 1.3−

β = 1.9 0.3 0.2171 0.400 0.4−
0.5 0.1012 0.600 0.6−
0.9 0.0207 1.000 1.0−

Table 5.3. Error and convergence rate at T = 0.5, 4t = 1/2000.

β h ‖u(T )− uh(T )‖ rate
β = 1.5 1/4 3.2305e-01 –

1/8 0.8354e-01 1.9512
1/16 2.1071e-02 1.9872
1/32 5.2921e-03 1.9932
1/64 1.3267e-03 1.9959

β = 1.3 1/4 6.4532e-01 –
1/8 1.7276e-01 1.9012
1/16 4.4492e-02 1.9572
1/32 1.1183e-02 1.9922
1/64 2.8096e-03 1.9929

observe that the convergence rate is of O(h2)-order which is consistent with
the theoretical prediction.
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