• Title/Summary/Keyword: Finite Value Method

Search Result 909, Processing Time 0.025 seconds

Design Simulation of Epoxy Mold Type PT using Finite Element Method (유한 요소법을 이용한 에폭시 몰드형 PT의 설계 시뮬레이션)

  • Park, Geon-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.119-122
    • /
    • 2005
  • In this study, the design simulation for optimal wire batch around service line was made to improve the dielectric strength at the primary winding using Finite Element Method. The automatic convergence algorithm for finding of limit object value using loop circulation method was developed to make the optimal design simulator. The modulation method was suggested to make division time faster which was very important for full simulation efficiency. As a result, the simulation time was reduced and the optimal wire batch design was obtained.

  • PDF

Fretting Wear Simulation of Press-Fitted Shaft with Finite Element Analysis and Influence Function Method (유한요소해석과 영향함수법을 이용한 압입축의 프레팅 마모해석)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;Choi, Jae-Boong;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.54-62
    • /
    • 2008
  • In this paper the fretting wear of press-fitted specimens subjected to a cyclic bending load was simulated using finite element analysis and numerical method. The amount of microslip and contact variable at press-fitted and bending load condition in a press-fitted shaft was analysed by applying finite element method. With the finite element analysis result, a numerical approach was applied to predict fretting wear based on modified Archard's equation and updating the change of contact pressure caused by local wear with influence function method. The predicted wear profiles of press-fitted specimens at the contact edge were compared with the experimental results obtained by rotating bending fatigue tests. It is shown that the depth of fretting wear by repeated slip between shaft and boss reaches the maximum value at the contact edge. The initial surface profile is continuously changed by the wear at the contact edge, and then the corresponding contact variables are redistributed. The work establishes a basis for numerical simulation of fretting wear on press fits.

AN SDFEM FOR A CONVECTION-DIFFUSION PROBLEM WITH NEUMANN BOUNDARY CONDITION AND DISCONTINUOUS SOURCE TERM

  • Babu, A. Ramesh;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.31-48
    • /
    • 2010
  • In this article, we consider singularly perturbed Boundary Value Problems(BVPs) for second order Ordinary Differential Equations (ODEs) with Neumann boundary condition and discontinuous source term. A parameter-uniform error bound for the solution is established using the Streamline-Diffusion Finite Element Method (SDFEM) on a piecewise uniform meshes. We prove that the method is almost second order of convergence in the maximum norm, independently of the perturbation parameter. Further we derive superconvergence results for scaled derivatives of solution of the same problem. Numerical results are provided to substantiate the theoretical results.

ACCURATE AND EFFICIENT COMPUTATIONS FOR THE GREEKS OF EUROPEAN MULTI-ASSET OPTIONS

  • Lee, Seunggyu;Li, Yibao;Choi, Yongho;Hwang, Hyoungseok;Kim, Junseok
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.1
    • /
    • pp.61-74
    • /
    • 2014
  • This paper presents accurate and efficient numerical methods for calculating the sensitivities of two-asset European options, the Greeks. The Greeks are important financial instruments in management of economic value at risk due to changing market conditions. The option pricing model is based on the Black-Scholes partial differential equation. The model is discretized by using a finite difference method and resulting discrete equations are solved by means of an operator splitting method. For Delta, Gamma, and Theta, we investigate the effect of high-order discretizations. For Rho and Vega, we develop an accurate and robust automatic algorithm for finding an optimal value. A cash-or-nothing option is taken to demonstrate the performance of the proposed algorithm for calculating the Greeks. The results show that the new treatment gives automatic and robust calculations for the Greeks.

Comparison of Regularization Techniques for an Inverse Radiation Boundary Analysis (역복사경계해석을 위한 다양한 조정법 비교)

  • Kim, Ki-Wan;Shin, Byeong-Seon;Kil, Jeong-Ki;Yeo, Gwon-Koo;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.903-910
    • /
    • 2005
  • Inverse radiation problems are solved for estimating the boundary conditions such as temperature distribution and wall emissivity in axisymmetric absorbing, emitting and scattering medium, given the measured incident radiative heat fluxes. Various regularization methods, such as hybrid genetic algorithm, conjugate-gradient method and finite-difference Newton method, were adopted to solve the inverse problem, while discussing their features in terms of estimation accuracy and computational efficiency. Additionally, we propose a new combined approach that adopts the hybrid genetic algorithm as an initial value selector and uses the finite-difference Newton method as an optimization procedure.

A Numerical Method for a High-Speed Ship with a Transom Stern

  • Kyoung Jo-Hyun;Bai Kwang-June
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.3
    • /
    • pp.8-17
    • /
    • 2004
  • A numerical method is developed for computing the free surface flows around a transom stern of a ship at a high Froude number. At high speed, the flow may be detached from the flat transom stern. In the limit of the high Froude number, the problem becomes a planning problem. In the present study, we make the finite-element computations for a transom stern flows around a wedge-shaped floating ship. The numerical method is based on the Hamilton's principle. The problem is formulated as an initial value problem with nonlinear free surface conditions. In the numerical procedures, the domain was discretized into a set of finite elements and the numerical quadrature was used for the functional equation. The time integrations of the nonlinear free surface condition are made iteratively at each time step. A set of large algebraic equations is solved by GMRES(Generalized Minimal RESidual, Saad and Schultz 1986) method which is proven very efficient. The computed results are compared with previous numerical results obtained by others.

EXISTENCE OF SOLUTION OF FINITE SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS

  • Ohm, Mi-Ray
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.309-318
    • /
    • 1994
  • The approach presented in this paper is based on the transformation of the Stefan problem in one space dimension to an initial-boundary value problem for the heat equation in a fixed domain. Of course, the problem is non-linear. The finite element approximation adopted here is the standared continuous Galerkin method in time. In this paper, only the regular case is discussed. This means the error analysis is based on the assumption that the solution is sufficiently smooth. The aim of this paper is the existence of the solution in a finite Galerkin system of ordinary equations.

  • PDF

ON COMPLEX VARIABLE METHOD IN FINITE ELASTICITY

  • Akinola, Ade
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.183-198
    • /
    • 2003
  • We highlight the alternative presentation of the Cauchy-Riemann conditions for the analyticity of a complex variable function and consider plane equilibrium problem for an elastic transversely isotropic layer, in finite deformation. We state the fundamental problems and consider traction boundary value problem, as an example of fundamental problem-one. A simple solution of“Lame's problem”for an infinite layer is obtained. The profile of the deformed contour is given; and this depends on the order of the term used in the power series specification for the complex potential and on the material constants of the medium.

Computation of Crack Tip Mode I Stress Intensity Factor of a Specimen for Measuring Slow Crack Growth Resistance of Plastic Pipes Using Finite-Element Method (유한요소법에 의한 플라스틱 파이프의 저속균열성장 저항성 시험편 균열선단 모드 I 응력확대계수 계산)

  • Choi, Sun-Woong;Park, Yeong-Joo;Suh, Yeong-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1225-1234
    • /
    • 2005
  • Mode I stress intensity factor $(K_I)$ of Notched Ring Test(NRT) specimen for measuring slow crack growth resistance was found using finite-element method. The theoretical $K_I$ value of NRT was not available in any references and could not be solved analytically. At first, in order to verify the accuracy of the finite-element approach, published $K_I$ values of several cracks were calculated and compared with finite-element results. The results were in good agreement within inherent errors of theoretical $K_I$. Finally the mode I stress intensity factor of NRT was found using 2- and 3-dimensional finite-element methods and expressed as a function of the applied load. This enabled direct comparison of resistance to slow crack growth between NRT and Notched Pipe Test(NPT), which employ different loading regime.

LERAY-SCHAUDER DEGREE THEORY APPLIED TO THE PERTURBED PARABOLIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.2
    • /
    • pp.219-231
    • /
    • 2009
  • We show the existence of at least four solutions for the perturbed parabolic equation with Dirichlet boundary condition and periodic condition when the nonlinear part cross two eigenvalues of the eigenvalue problem of the Laplace operator with boundary condition. We obtain this result by using the Leray-Schauder degree theory, the finite dimensional reduction method and the geometry of the mapping. The main point is that we restrict ourselves to the real Hilbert space instead of the complex space.

  • PDF