• Title/Summary/Keyword: Finite Element Method : 유한요소해법

Search Result 81, Processing Time 0.027 seconds

Development of Out-of-Core Equation Solver with Virtual Memory Database for Large-Scale Structural Analysis (가상 메모리 데이타베이스를 이용한 대규모 구조해석용 코어 외 방정식 해석기법의 개발)

  • 이성우;송윤환;이동근
    • Computational Structural Engineering
    • /
    • v.4 no.2
    • /
    • pp.103-110
    • /
    • 1991
  • To solve the large problems with limited core memory of computer, a disk management scheme called virtual memory database has been developed. Utilizing this technique along with memory moving scheme, an efficient in-and out-of-core column solver for the sparse symmetric matrix commonly arising in the finite element analysis is developed. Compared with other methods the algorithm is simple, therefore the coding and computational efficiencies are greatly enhanced. Analysis example shows that the proposed method efficiently solve the large structural problem on the small-memory micro-computer.

  • PDF

Development of an Object-oriented Finite Element Model through Iterative Method Ensuring Independency of Elements (요소 독립성이 유지되는 반복해법에 의한 객체지향 유한요소모델 개발)

  • Lee, Han-Ki;Kim, Tae-Gon;Lee, Jeong-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.115-125
    • /
    • 2012
  • Application of the Object-oriented Programming (OOP) method to the Finite Element Model (FEM) program has various strengths including the features of encapsulation, polymorphism and inheritance. However, this technique should be based upon a premise that the independency of the object method and data to be used is guaranteed. By attempting to apply the OOP to the FEM, existing researches go against the independency of the OOP which is an essential feature of the method. The reason is this: existing researches apply the OOP to modules in accordance with analysis procedures, although the data to be used is classified as an element unit in the FEM. Therefore, the required independency cannot be maintained as whole stiffness matrices and boundary conditions are combined together. Also, solutions are sought from analysis module after data is regrouped at the pre-processor, and their results are analyzed during the post-processor. As this is similar to a batch processing, it cannot use data at analysis, and recalculation should be done from the beginning if any condition is changed after the analysis is complete, which are limitations of the existing researches. This research implemented the Object-orientation of elements so that the three features of the OOP (i.e. encapsulation, polymorphism and inheritance) can be guaranteed and their independency maintained as a result. For this purpose, a model called 'Object-oriented Finite element Model ensuring the Independency of Elements (OFMIE)', which enables the analysis of targets through mutual data exchanges within instance, was developed. In conclusion, the required independency was achieved in the instance of the objected elements and the analysis results of previous conditions could be used for the analysis after changes. The number of repetitive calculations was reduced by 75 per cent through this gradual analysis processes.

Post-buckling Behavior and Vibration Characteristics of Patched Reinforced Spherical Composite Panels (패치로 보강된 구형 복합재료 패널의 후좌굴 거동 및 진동 특성해석)

  • Lee, J.J.;Yeom, C.H.;Lee, I.
    • Composites Research
    • /
    • v.14 no.4
    • /
    • pp.27-34
    • /
    • 2001
  • The finite element method based on the total Lagrangian description of the motion and the Hellinger-Reissner principle with independent strain is applied to investigate the nonlinear behavior and vibration characteristics for patched reinforced laminated spherical panels. The patched elements are formulated using variable thickness at arbitrary point on the reference plane. The cylindrical arc-length method is adopted to obtain a nonlinear solution. The post-buckled vibration is assumed to be small amplitude. The effect of patch in the spherical shell Panel is investigated on the nonlinear response and the fundamental vibration characteristics. The present results show that the load-carrying capability can be improved by reinforcing patch. The fundamental frequency of patched panel is lower than that of equivalent shell panel. However, the fundamental frequency of patched panel does not decrease greatly due to the increase of nonlinear geometrical stiffness under loading.

  • PDF

A study on the process of tube end spinning by the upper bound method and the finite element method (상계해법과 유한요소법을 이용한 스피닝공정 해석에 관한 연구)

  • 김전형;홍성인;이정환;이영선
    • Transactions of Materials Processing
    • /
    • v.6 no.6
    • /
    • pp.517-526
    • /
    • 1997
  • The purpose of this study is to investigate changes in the wall thickness of tube sinking and working forces by the upper bound method and ABAQUS code. The independent variables are ; workpiece material, original wall thickness of tube, die angle, friction, and reduction of diameter. The results indicate that these five variables are factors of the increase in wall-thickness and working forces. Three variables, a inner tube wall angle and two angles of the velocity discontinuous surfaces, are optimized in this proposed velocity field by the upper bound method. In this method, we can estimate the working forces and final tube thicknesses similar to actual forming process. Optimum process variables which are obtained by upper bound method are used in ABAQUS pre-model.

  • PDF

A Study on the Process of Tube End Spining by the Upper bound Method and Finite Element Method (상계해법과 유한요소법을 이용한 스피닝공정 해석에 관한 연구)

  • 김진형;홍성인;이영선
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.23-30
    • /
    • 1996
  • The purpose of this study was to investigate changes in thewall thickness of tube sinking and working forces by the upper bound method and ABAQUS code. The independent variables were : Workpiece material, original wall thickness of tube, die angle, friction, and diameter reduction. The results indicated that of these five variables were a factor in wall-thickness increase and working forces. Three variables, a inner tube wall angle and two angles of the velocity discontinuous surfaces, are optimized in this proposed velocity field by the upper bound method. In this method, we can estimate the working forces and final tube thicknesses whcih are similar to acturla forming process. Optimized process variables which are obtained by upper bound method are used in ABAQUS pre-model . In ABAQUS analysis, the stress and the strain contours which are considered to be heat generation occured by the friction during forming process are observed.

  • PDF

Analysis of Dynamic Deformation of 4-Bar Linkage Mechanism (1) Finite Element Analysis and Numerical Solution (4절 링크 기구의 동적 변형 해석 (I) 유한 요소 해석 및 수치해)

  • Cho, Sun-Whi;Park, Jong-Keun;Lee, Jin
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.737-752
    • /
    • 1992
  • Analysis of elasto-dynamic deformation of flexible linkage mechanism is conducted using the finite element method. The equations of motion of the system are derived from the static structural problem in which dynamic inertia, gravitational and driving forces are treated as external loads. Linear spring model is included in the formulation of equation of motions to represent the effects of deformation of elastic bearings of revolute joints on the system behavior. A computer program is constructed and applied to analyze a specific crank-lever 4-bar mechanism. The algorithm of the program is as follows. First, the natural frequencies and the mode shapes of the system are calculated by solving the eigenproblem of the mechanism system which can be considered as a static structure by assuming the input shaft (crank shaft) to be fixed at any given configuration of mechanism. And finally, the elasto-dynamic deformation of the whole system is obtained using mode superposition method for the case of constant input speed. The effect of geometric stiffness on the mechamism is included in the program with the axial forces of links obtained through the quasi-static displacement analysis. It is found that the geometric stiffness exerts an important effect upon the elasto-dynamic behavior of the flexible linkage mechanism. Elastic deformation of bearing lowers the natural frequencies of the system, resulting smaller elastic displacement at the mid-point of the links and bigger elestic displacement at the ends of the links than rigid bearing. The above investigation of flexible linkage mechanism shows that the effects of the elastic deformation of bearing on the mechanism should be considered to design the mechanism which satisfies more preciously the purpose and the condition of design.

Study of Efficient Parallel Computation of Cholesky's Method in FE Mesh (유한요소망에서의 효율적인 직접해법 병렬계산에 관한 연구)

  • Lee, H.B.;Choi, K.;Kim, H.J.;Jung, H.K.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.68-70
    • /
    • 1996
  • In this paper, an efficient parallel computation method for solving large sparse systems of linear algebraic equations by using Cholesky's method in the finite element method is studied. The methods of minimizing the number of fill-ins in the factorization process of factorization are investigated for minimizing the amount of memory and computation time. The parallel programming is implemented under the PVM(Parallel Virtual Machine) environment. The method of load-distribution is studied for minimizing the computation time and the communication time.

  • PDF

The Analysis of Hatch Corner by the Coupling Method of F.E.M and B.E.M (유한요소법과 경계요소법의 결합해법에 의한 HATCH CORNER 해석)

  • Chang-Yull,Kim;Soo-Lyong,Lee;Jung-Sin,Che
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.3
    • /
    • pp.25-34
    • /
    • 1987
  • Whereas the finite element method is well established today, the boundary element method is a fairly recent development. Both are general-purpose methods for the solution of various structural analysis problem. The B.E.M has several potential advantages relative to the F.E.M. One of them is that the number of unknowns in algebraic system obtained by discretization is proportional to the number of boundary nodes. Anothor advantage is the ease of discretization and input data preparation. However, the B.E.M. always leads to a fully populated and unsymmetric system of equations. Even though the number of degree-of-freedom is reduced as compared with F.E.M, since nodes exist on the boundary only in the B.E.M, to follow that the effort to solve the equations can be greater. It has been shown also that the time spent in setting up the coefficient matrix is a significant and can, in some cases, be greater than the time required to solve the equation. Thus, one can naturally consider the idea that two methods should be coupled, then the advantages of both methods can be taken. And further, by using this coupling method the HATCH CORNER was analyzed to give initial design data.

  • PDF

Finite Element Method for Structural Concrete Based on the Compression Field Theory (압축응력장 이론을 적용한 콘크리트 유한요소법 개발)

  • 조순호
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.151-159
    • /
    • 1996
  • A finite element formulation based on the CFT(Compression Field Theory) concept such as the effect of compression softening in cracked concrete, and macroscopic and rotating crack models etc. was presented for the nonlinear behaviour of structural concrete. In this category, tangential or secant material stiffnesses for cracked concrete were also defined and discussed in view of the iterative solution schemes for nonlinear equations. Considering the computational efficiency and the ability of modelling the post-ultimate behaviour as major concerns, the incremental displacement solution algorithm involving initial material stiffnesses and the relaxation procedure for fast convergence was adopted and formulated in a type of 8-noded quadrilateral isoparametric elements. The analysis program NASCOM(Nonlinear Analysis of structrual Concrete by FEM : Monotonic Loading) developed baed on the CFT constitutive relationships and the incremetal solution strategy described enables the predictions of strength and deformation capacities in a full range. crack patterns and their corresponding widths, and yield extents of reinforcement. As the verfication purpose of NASCOM, the prediction of Cervenka's panel test results including the load resistance and the deformation history was made. A limited number of predictions indicate a good correlation in a general sense.

  • PDF

A Study on GPU Computing of Bi-conjugate Gradient Method for Finite Element Analysis of the Incompressible Navier-Stokes Equations (유한요소 비압축성 유동장 해석을 위한 이중공액구배법의 GPU 기반 연산에 대한 연구)

  • Yoon, Jong Seon;Jeon, Byoung Jin;Jung, Hye Dong;Choi, Hyoung Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.9
    • /
    • pp.597-604
    • /
    • 2016
  • A parallel algorithm of bi-conjugate gradient method was developed based on CUDA for parallel computation of the incompressible Navier-Stokes equations. The governing equations were discretized using splitting P2P1 finite element method. Asymmetric stenotic flow problem was solved to validate the proposed algorithm, and then the parallel performance of the GPU was examined by measuring the elapsed times. Further, the GPU performance for sparse matrix-vector multiplication was also investigated with a matrix of fluid-structure interaction problem. A kernel was generated to simultaneously compute the inner product of each row of sparse matrix and a vector. In addition, the kernel was optimized to improve the performance by using both parallel reduction and memory coalescing. In the kernel construction, the effect of warp on the parallel performance of the present CUDA was also examined. The present GPU computation was more than 7 times faster than the single CPU by double precision.