• 제목/요약/키워드: Finite Element Impact Analysis

검색결과 787건 처리시간 0.025초

점지지된 복합재료 외팔 사각판의 자유진동 (Free Vibration Cantilevered Composite Rectangular Plates with Point Supports)

  • 이영신;최명환;류충현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.414-419
    • /
    • 1997
  • The free vibration analysis of cantilever CFRP and GFRP composite rectangular plates with point supports at the free edge and interior position is performed. The natural frequencies and mode shapes of plates are experimentally determined by impact testing using an impact hammer. To compare and verify these experimental results, the finite element analysis is also carried out and the non-dimensional frequency parameters are compared with FE analysis results. The effects of the number and location of the point support on the frequencies are examined. In the experimental results, it is found that a significant increase in frequencies occurs when the point supports are added on certain parts of plates.

  • PDF

SPH 기법을 활용한 Type 4 복합재료 압력용기 낙하 충격 해석 (Fall Impact Analysis of Type 4 Composite Pressure Vessels Using SPH Techniques)

  • 송귀남;김한상
    • 한국수소및신에너지학회논문집
    • /
    • 제32권3호
    • /
    • pp.172-179
    • /
    • 2021
  • The drop impact analysis was carried out on Type 4 pressure containers, and the degree of damage to the falling environment was predicted and determined using smoothed particle hydrodynamics (SPH) techniques. The purpose of the design and the optimization process of the winding pattern of the pressure vessel of the composite material is to verify the safety of the container in actual use. Finally, an interpretation process that can be implemented in accordance with domestic test standards can be established to reduce the cost of testing and containers through pre-test interpretation. The research on the fall analysis of pressure vessels of composite materials was conducted using Abaqus, and optimization was conducted using ISIGHT. As a result, the safety of composite pressure vessels in the falling environment was verified.

단계적 파괴 모델에 의한 적층 복합재료의 충격거동 해석 (Impact Behavior of Laminated Composite using Progressive Failure Model)

  • 강문수;이경우;강태진
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.102-105
    • /
    • 2000
  • Recently, applications of integrated large composite structures have been attempted to many structures of vehicles. To improve the cost performance and reliability of the integrated composite structures, it is necessary to judge structural integrity of the composite structures. For the judgement, we need fracture simulation techniques for composite structures. Many researches oil the fracture simulation method using FEM have been reported by now. Most of the researches carried out simulations considering only matrix cracking and fiber breaking as fracture modes, and did not consider delamination. Several papers have reported the delamination simulation, but all these reports require three-dimensional elements or quasi three- dimensional elements for FEM analysis. Among fracture mechanisms of composite laminates, delamination is the most important factor because it causes stiffness degradation in composite structures. It is known that onset and propagation of delamination are dominated by the strain energy release rate and interfacial moment. In this study, laminated composite has been described by using 3 dimensional finite elements. Then impact behavior of the laminated composite is simulated using FEM(ABAQUS/Explicit) with progressive failure mechanism. These results are compared with experimental results.

  • PDF

Numerical Simulation of Mechanical Behavior of Composite Structures by Supercomputing Technology

  • Kim, Seung-Jo;Ji, Kuk-Hyun;Paik, Seung-Hoon
    • Advanced Composite Materials
    • /
    • 제17권4호
    • /
    • pp.373-407
    • /
    • 2008
  • This paper will examine the possibilities of the virtual tests of composite structures by simulating mechanical behaviors by using supercomputing technologies, which have now become easily available and powerful but relatively inexpensive. We will describe mainly the applications of large-scale finite element analysis using the direct numerical simulation (DNS), which describes composite material properties considering individual constituent properties. DNS approach is based on the full microscopic concepts, which can provide detailed information about the local interaction between the constituents and micro-failure mechanisms by separate modeling of each constituent. Various composite materials such as metal matrix composites (MMCs), active fiber composites (AFCs), boron/epoxy cross-ply laminates and 3-D orthogonal woven composites are selected as verification examples of DNS. The effective elastic moduli and impact structural characteristics of the composites are determined using the DNS models. These DNS models can also give the global and local information about deformations and influences of high local in-plane and interlaminar stresses induced by transverse impact loading at a microscopic level inside the materials. Furthermore, the multi-scale models based on DNS concepts considering microscopic and macroscopic structures simultaneously are also developed and a numerical low-velocity impact simulation is performed using these multi-scale DNS models. Through these various applications of DNS models, it can be shown that the DNS approach can provide insights of various structural behaviors of composite structures.

다중충돌 피닝잔류응력 평가를 위한 소성숏이 포함된 3차원 유한요소해석 모델 (A 3D FEA Model with Plastic Shots for Evaluation of Peening Residual Stress due to Multi-Impacts)

  • 김태형;이형일
    • 대한기계학회논문집A
    • /
    • 제32권8호
    • /
    • pp.642-653
    • /
    • 2008
  • In this paper, we propose a 3-D finite element (FE) analysis model with combined physical behavior and kinematical impact factors for evaluation of residual stress in multi-impact shot peening. The FE model considers both physical behavior of material and characteristics of kinematical impact. The physical parameters include elastic-plastic FE modeling of shot ball, material damping coefficient, dynamic friction coefficient. The kinematical parameters include impact velocity and diameter of shot ball. Multi-impact FE model consists of 3-D symmetry-cell. We can describe a certain repeated area of peened specimen under equibiaxial residual stress by the cell. With the cell model, we investigate the FE peening coverage, dependency on the impact sequence, effect of repeated cycle. The proposed FE model provides converged and unique solution of surface stress, maximum compressive residual stress and deformation depth at four impact positions. Further, in contrast to the rigid and elastic shots, plastically deformable shot produces residual stresses closer to experimental solutions by X-ray diffraction. Consequently, it is confirmed that the FE model with peening factors and plastic shot is valid for multi-shot peening analyses.

Low velocity impact behavior of concrete beam strengthened with CFRP strip

  • Kantar, Erkan;Anil, Ozgur
    • Steel and Composite Structures
    • /
    • 제12권3호
    • /
    • pp.207-230
    • /
    • 2012
  • Nowadays CFRP (Carbon Fiber Reinforced Polymer) became widely used materials for the strengthening and retrofitting of structures. Many experimental and analytical studies are encountered at literature about strengthening beams by using this kind of materials against static loads and cyclic loads such as earthquake or wind loading for investigating their behavior. But authors did not found any study about strengthening of RC beams by using CFRP against low velocity impact and investigating their behavior. For these reasons an experimental study is conducted on totally ten strengthened RC beams. Impact loading is applied on to specimens by using an impact loading system that is designed by authors. Investigated parameters were concrete compression strength and drop height. Two different sets of specimens with different concrete compression strength tested under the impact loading that are applied by dropping constant weight hammer from five different heights. The acceleration arises from the impact loading is measured against time. The change of velocity, displacement and energy are calculated for all specimens. The failure modes of the specimens with normal and high concrete compression strength are observed under the loading of constant weight impact hammer that are dropped from different heights. Impact behaviors of beams are positively affected from the strengthening with CFRP. Measured accelerations, the number of drops up to failure and dissipated energy are increased. Finite element analysis that are made by using ABAQUS software is used for the simulation of experiments, and model gave compatible results with experiments.

Performance of bridge structures under heavy goods vehicle impact

  • Zhao, Wuchao;Qian, Jiang;Wang, Juan
    • Computers and Concrete
    • /
    • 제22권6호
    • /
    • pp.515-525
    • /
    • 2018
  • This paper presents a numerical study on the performance of reinforced concrete (RC) bridge structures subjected to heavy goods vehicle (HGV) collision. The objectives of this study are to investigate the dynamic response and failure modes of different types of bridges under impact loading as well as to give an insight into the simplified methods for modeling bridge structures. For this purpose, detailed finite-element models of HGV and bridges are established and verified against the full-scale collision experiment and a recent traffic accident. An intensive parametric study with the consideration of vehicle weight, vehicle velocity, structural type, simplified methods for modeling bridges is conducted; then the failure mode, impact force, deformation and internal force distribution of the validated bridge models are discussed. It is observed that the structural type has a significant effect on the force-transferring mechanism, failure mode and dynamic response of bridge structures, thus it should be considered in the anti-impact design of bridge structures. The impact force of HGV is mainly determined by the impact weight, impact velocity and contact interface, rather than the simplification of the superstructure. Furthermore, to reduce the modeling and computing cost, it is suggested to utilize the simplified bridge model considering the inertial effect of the superstructure to evaluate the structural impact behavior within a reasonable precision range.

Adaptation of impactor for the split Hopkinson pressure bar in characterizing concrete at medium strain rate

  • Zhao, Pengjun;Lok, Tat-Seng
    • Structural Engineering and Mechanics
    • /
    • 제19권6호
    • /
    • pp.603-618
    • /
    • 2005
  • The split Hopkinson pressure bar (SHPB) technique is widely used to characterize the dynamic mechanical response of engineering materials at high strain rates. In this paper, attendant problems associated with testing 70 mm diameter concrete specimens are considered, analysed and resolved. An adaptation of a conventional solid circular striker bar, as a means of achieving reliable and repeatable SHPB tests, is then proposed. In the analysis, a pseudo one-dimensional model is used to analyse wave propagation in a non-uniform striker bar. The stress history of the incident wave is then obtained by using the finite difference method. Comparison was made between incident waves determined from the simplified model, finite element solution and experimental data. The results show that the simplified method is adequate for designing striker bar shapes to overcome difficulties commonly encountered in SHPB tests. Using two specifically designed striker bars, tests were conducted on 70 mm diameter steel fibre reinforced concrete specimens. The results are presented in the paper.

충격하중에 의해 크랙 주위에 형성되는 응력장에 관한 수치해석적 연구 (Numerical Analysis of Stress Field around Crack Tip under Impact Load)

  • 황갑운;조규종
    • 대한기계학회논문집A
    • /
    • 제20권2호
    • /
    • pp.450-460
    • /
    • 1996
  • To investigate the effect of stress wave propagation for crack tip, impact responses of two-dimensional plates with oblique cracks are investigated by a numerical method. In the numerical analysis, the finite element method is used in space domain discretization and the Newmark constant acceleration algorithm is used in time integration. According to the numerical results from the impact response analysis. it is found that the stress fields are bisected at the crack surface and the parts of stress intensity are moved along the crack face. The crack tip stress fields are yaried rapidly. The magnitude of crack tip stress fields are converted to dynamic stress intensity factor. Dynamic sress intensity factor appears when the stress wave has reached at the crack tip and the aspect of change of dynamic stress intensity factor is shown to be the same as the part of the flow of stress intensity.

Optimization and investigations of low-velocity bending impact of thin-walled beams

  • Hossein Taghipoor;Mahdi Sefidi
    • Steel and Composite Structures
    • /
    • 제50권2호
    • /
    • pp.159-181
    • /
    • 2024
  • In the present study, the effect of geometrical parameters of two different types of aluminum thin-walled structures on energy absorption under three-bending impact loading has been investigated experimentally and numerically. To evaluate the effect of parameters on the specific energy absorption (SEA), initial peak crushing force (IPCF), and the maximum crushing distance (δ), a design of experiment technique (DOE) with response surface method (RSM) was applied. Four different thin-walled structures have been tested under the low-velocity impact, and then they have simulated by ABAQUS software. An acceptable consistency between the numerical and experimental results was obtained. In this study, statistical analysis has been performed on various parameters of three different types of tubes. In the first and the second statistical analysis, the dimensional parameters of the cross-section, the number of holes, and the dimensional parameter of holes were considered as the design variables. The diameter reduction rate and the number of sections with different diameters are related to the third statistical analysis. All design points of the statistical method have been simulated by the finite element package, ABAQUS/Explicit. The final result shows that the height and thickness of tubes were more effective than other geometrical parameters, and despite the fact that the deformations of the cylindrical tubes were around forty percent greater than the rectangular tubes, the top desirability was relevant to the cylindrical tubes with reduced cross-sections.