• Title/Summary/Keyword: Fine stage

Search Result 515, Processing Time 0.033 seconds

Optimal Design and Control of xy${\theta}$ Fine Stage in Lithography System (리소그라피 장비에서 xy${\theta}$미세구동기의 최적 설계 및 제어)

  • 김동민;김기현;이성규;권대갑
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.163-170
    • /
    • 2002
  • The quality of a precision product, in general, relies on the accuracy and precision of its manufacturing and inspection process. In many cases, the level of precision in the manufacturing and inspection system is also dependent on the positioning capability of tool with respect to the work piece in the process. Recently the positioning accuracy level has reached to the level of submicron and long range of motion is required. For example, for 1 GDARM lithography, 20nm accuracy and 300mm stroke needs. This paper refers to the lithography stage especially to fine stage. In this study, for long stroke and high accuracy, the dual servo system is proposed. For the coarse actuator, LDM (Linear DC Motor) is used and for fine one VCM is used. In this study, we propose the new structure of VCM for the fine actuator. It is 3 axis precision positioning stage for an aligner system. After we perform the optimal design of the stage to obtain the maximum force, which is related to the acceleration of the stage to accomplish throughput of product. And we controlled this fine stage with TDC. So we obtained 50nm resolution. So later more works will be done to obtain better accuracy.

Fast and Fine Tracking Control System Using Coarse/Fine Compound Actuation

  • Kwon, Sang-Joo;Chung, Wan-Kyun;Youngil Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.463-463
    • /
    • 2000
  • A dual-stage positioner for fast and fine robotic manipulations is presented. By adopting the merits of both coarse and fine actuator, a desirable system having the capacity of large workspace with high resolution of motion is enabled. We have constructed an ultra precision XY positioner with dual-stage mechanism where the PZT driven fine stage is mounted on the motor driven XY positioner and applied it to fine tracking controls and micro-tele operations as a slave manipulator. We describe essential merits of the compound actuation mechanism and some control strategies to successfully utilize it with proper servo system design. Through experimental results, the effectiveness of the coarse/fine manipulation by the dual-stage positioner will be shown.

  • PDF

Development of 3-axis fine Positioning Stage : Part 2. Fabrication and Performance Evaluation (초정밀 3축 이송 스테이지의 개발 : 2. 제작 및 성능 평가)

  • Kang, Joong-Ok;Baek, Seok;Han, Chang-Soo;Hong, Sung-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.155-162
    • /
    • 2004
  • This paper presents the fabrication procedure and the experiments for the 3-axis fine positioning stage proposed in[1]. First, the dynamic characteristics of the actuator and the stage are tested with the preload changed in order to validate the stage design specifications. Secondly, the performance of the stage is also evaluated on the accuracy associated with linear positioning, angular error, and straightness error. Experimental results show that the developed stage is accurate enough to be used for nanometer positioning. Through the analysis and experiment, the developed fine positioning stage are found to have a long stroke due to the magnetically preloaded PZT actuators, the minimum motion crosstalk due to the use of a ball contact mechanism and the compact design.

Control of Decoupled Type High Precision Dual-Servo (Decoupled Type의 초정밀 이중 서보의 제어에 관한 연구)

  • Nam Byoung-Uk;Kim Ki-Hyun;Choi Young-Man;Kim Jung-Jae;Lee Suk-Won;Gweon Dae-Gab
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.43-50
    • /
    • 2006
  • Recently, with rapid development of semiconductor and flat panel display, the manufacturing equipments are required to have large travel range, high productivity, and high accuracy. In this paper, an ultra precision decoupled dual servo (DDS) system is proposed to meet these requirements. And a control scheme for the DDS is studied. The proposed DDS consists of a $XY{\Theta}$ fine stage for handling work-pieces precisely and a XY coarse stage for large travel range. The fine stage consists of four voice coil motors (VCM) and air bearing guides. The coarse stage consists of linear motors and air bearing guides. The DDS is mechanically decoupled between coarse stage and fine stage. Therefore, both stages must be controlled independently and the performance of the DDS is mainly determined by the fine stage. For high performance tracking, the controller of fine stage consists of time delay control (TDC) and perturbation observer while the controller of coarse stage is TDC alone. With these individual controllers, two kinds of dual-servo control strategies are suggested: master-slave type and parallel type. By simulations and experiments, the performances of two dual-servo control strategies are compared.

Development of a 3-axis fine positioning stage : Part 1. Design and Fabrication (초정밀 3축 이송 스테이지의 개발 : 1. 설계 및 제작)

  • Kang, Joong-Ok;Seo, Mun-Hoon;Baek, Seok;Han, Chang-Soo;Hong, Sung-Wook
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.648-651
    • /
    • 2003
  • This paper presents a 3-axis fine positioning stage. All the procedure concerning the design and fabrication of the stae are described. The stage considered here is composed of flexure hinges, piezoelectric actuators and their peripherals. A special flexure hinge is adopted to be able to actuate the single stage in three axes at the same time. A ball contact mechanism is introduced into the piezoelectric actuator to avoid the cross talk among the axes. The final design is obtained with the theoretical analysis on the stage. An actual fine stage is developed and the design specifications are verified through an experiment.

  • PDF

Development of 3-axis Fine Positioning Stage: Part 1. Analysis and Design (초정밀 3축 이송 스테이지의 개발: 1. 해석 및 설계)

  • 강중옥;서문훈;한창수;홍성욱
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.147-154
    • /
    • 2004
  • This paper presents a procedure for analysis and design of a fine positioning stage, which has many applications in industries for machine tools, semiconductor, LCD and so forth. The stage considered here is based on a single module with 3 axes which is composed of flexures hinges, piezoelectric actuators and their peripherals. Through a series of analysis, the structural analysis model is simplified as a rigid body(the moving part) and springs(the flexures hinges). An experimental design procedure is applied to determine the dimension of flexures hinges. A sensitivity analysis on the notch positions is also performed to obtain a guideline of fabrication accuracy for the stage. An actual fine stage is made and verified through an experiment on the dynamic characteristics.

Development of a 3-axis fine positioning stage : Part 2. Experiments and performance evaluation (초정밀 3축 이송 스테이지의 개발 :2. 동특성 실험 및 성능 평가)

  • Kang, Joong-Ok;Kim, Man-Dal;Baek, Seok;Han, Chang-Soo;Hong, Sung-Wook
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1207-1210
    • /
    • 2003
  • This paper deals with experiments for dynamic characteristics and performance evaluation of the 3-axis fine positioning stage developed in [1]. The features of the developed fine positioning stage are the long stroke due to the magnetically preloaded PZT actuators, the minimum motion crosstalk due to the use of a ball contact mechanism and the compact design. The dynamic characteristics of the actuator and the stage are tested with the preload changed in order to validate the actuator and the stage design. Performance evaluation is also made for the PZT actuators as well as the stage positioning accuracy. Experimental results show that the developed stage is accurate enough to be used for nanometer positioning.

  • PDF

Robust Time-Optimal Control for Coarse/Fine Dual-Stage Systems

  • Kwon, Sang-Joo;Chung, Wan-Kyun;Youngil Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.317-320
    • /
    • 1999
  • A robust end time optimal conかof strategy for dual-stage servo system is presented. The time optimal trajectory for a mass-damper system is determined and given os a reference input to the servo system. The feedback controller is constructed so that the fine stage tracks the coarse stage errors and robustly designed as the“perturbation compensated sliding mode control(PCSMC)”law, a combination of slid-ing mode controller(SMC) and perturbation observer(PO). In addition, a null motion controller which regulates the fine stage at its neutral position is designed based on the“dynamic consistency”So, the overall dual-stage servo system exhibits the robust and time-optimal performance. The inherent merit and performance of the dual-stage system will be shown.

  • PDF

초정밀 스테이지 설계 및 제작

  • 강중옥;한창수;홍성욱
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.12a
    • /
    • pp.177-181
    • /
    • 2003
  • This paper presents a 3-axis fine positioning stage. All the procedure concerning the design and fabrication of the stage are described. The stage considered here is composed of flexure hinges, piezoelectric actuators and their peripherals. A special flexure hinge is adopted to be able to actuate the single stage in three axes at the same time. A ball contact mechanism is introduced into the piezoelectric actuator to avoid the cross talk among the axes. The final design is obtained with the theoretical analysis on the stage. An actual fine stage is developed and the design specifications are verified through an experiment.

  • PDF