• Title/Summary/Keyword: Film Boiling

Search Result 157, Processing Time 0.026 seconds

Numerical Study of Bubble Growth in a Microchannel (미세관에서의 기포성장에 관한 수치적 연구)

  • Seo, Ki-Chel;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.996-1003
    • /
    • 2004
  • The bubble motion during nucleate boiling in a microchannel is investigated by numerically solving the equations governing conservation of mass, momentum and energy in the liquid and vapor phases. The liquid-vapor interface is tracked by a level set method which is modified to include the effects of phase change at the interface and contact angle at the wall. Also, the evaporative heat flux from the thin liquid film that forms underneath a growing bubble attached to the wall is incorporated in the analysis. Based on the numerical results, the effects of channel size, contact angle, wall superheat and waiting period on the bubble growth and heat transfer in a microchannel are quantified.

A Study of Reflood Heat Transfer in Electrically-Heated Fuel Rod Bundle (電氣加熱式 模擬燃料棒 다발에서의 再冠水 熱傳達 硏究)

  • 정문기;박종석;이영환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.7-14
    • /
    • 1986
  • To predict the fuel clad temperature during the reflooding phase of a LOCA, one may need a knowledge of reflood heat tranfer mechanism in a rod bundle. For this purpose reflooding experiments have been carried out with an electrically heated 3*3 rod bundle. Using the method for the determination of local heat transfer coefficient from the measured wall temperature the parametric effects of coolant flow rate, initial wall temperature, coolant subcooling and heat generation rate on the propagation of rewetting front were investigated. Prediction of the wall temperature histories for these experiments was discussed using REFLUX code with modification of the rewetting temperature correlation. Through this modification, better agreement between experiment and prediction was obtained.

AN IMPROVED HEAT TRANSFER CORRELATION FOR DEVELOPING POST-DRYOUT REGION IN VERTICAL TUBES

  • NGUYEN, NGOC HUNG;MOON, SANG-KI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.407-415
    • /
    • 2015
  • A developing post-dryout region is characterized by significant heat transfer enhancements compared with the fully developed post-dryout region. The heat transfer enhancements are mainly due to upstream disturbance and entrained droplets in the region immediately downstream of the critical heat flux location. In this paper, an improved heat transfer correlation is developed for the developing post-dryout regions in vertical tubes over a wide range of flow conditions. The correlation represents a correction factor for the fully developed film-boiling look-up table to be applied to the developing post-dryout region. The new correlation significantly improves the heat transfer prediction in the developing post-dryout regions and provides very good agreement with the experimental data.

A Study of Rewetting Temperature in Cooling of Hot Surfaces (高溫表面의 冷却時 再水着 溫度 에 관한 硏究)

  • 정문기;이영환;박종석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.4
    • /
    • pp.463-470
    • /
    • 1985
  • In this study a parametric analysis for the rewetting temperature was made with 572 data obtained from the single tube experiment. The rewetting temperature was also evaluated by measuring the vaporization time of a liquid drop on a hot surface at the elevated pressures. The results showed that the rewetting temperature increased with flooding rate, inlet subcooling pressure and initial wall temperature, and decreased with increasing axial elevation. Based on the results obtained, the rewetting temperature correlation was suggested. From the comparison of correlated rewetting temperatures with measured values, it showed that the correlated values fell within .+-.5% error from the measured values.

A Study on the Characteristics of Flow with Polymer Additives (고분자물질 첨가에 의한 유동특성에 관한 연구)

  • 차경옥;김재근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.176-186
    • /
    • 1996
  • The phenomena of drag reduction using small quantities of a liner macromolecules has attracted the attention of many experimental investigations. On the other hand drag reduction in two phase flow can be applied to the transport of crude oil, phase change system such as chemical reactor, pool and boiling flow, and to flow with cavitation which occurs pump impellers. But the research on dragreduction in two phase flow is not sufficient. The purpose of the present work is to evaluate the drag reduction by measuring pressure drop, void fraction, mean liquid velocity and turbulent intensity whether polymer additives a horizontal single and two phase system or not. Flow pattern of air-water two phase flow was classified by electrical conductivity probe signal. Velocities and turbulent intensities of signal were measured simultaneously with a Hot-film anemometer.

  • PDF

Study on Minimum Heat Flux Point in Spray Cooling of Hot Plate (고온 평판의 분무냉각에 있어서 MHF점에 관한 연구)

  • 김영찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.10
    • /
    • pp.974-981
    • /
    • 2001
  • In this study, the minimum heat flux conditions are experimentally investigated for the spray cooling of hot plate. The hot plates are cooled down from the initial temperature of about$ 900^{\circ}C$, and the local heat flux and surface temperatures are calculated from the measured temperature-time history. The results show that the minimum heat flux point temperatures increase linearly resulting from the propagation of wetting front with the increase of the distance from the stagnation point of spray flow. However, in the wall region, the minimum heat flux point temperature becomes independent of the distance. Also, the velocity of wetting front increases with the increase of the droplet flow rate.

  • PDF

Effects of Storage Temperature and Packaging Methods on the Quality of Raw and Boiled Vegetable Peanut (저장온도 및 포장방법이 풋땅콩 품질에 미치는 영향)

  • 최윤희;정영근;박기훈;김영두
    • Food Science and Preservation
    • /
    • v.9 no.3
    • /
    • pp.267-270
    • /
    • 2002
  • This study was carried out to establish storage methods and to keep high quality of the raw and boiled vegetable peanut. After boiling at 100$^{\circ}C$ for 20min at 7% saline water far 40min the pods were packaged with 80 $\mu\textrm{m}$ Ny/LDPE film in vacuum, 80$\mu\textrm{m}$ LDPE film and Gauge-bag, and stored at room temperature and 4$^{\circ}C$. The moisture content of pods in room temperature were decreased than pods at 4$^{\circ}C$. After 21days storaging with Gauge-bag, texture of pods were toughen because moisture content of pods reduced severely. Colour of raw pods in packaging 80 $\mu\textrm{m}$ Ny/LDPE film vacuum was severely browning but boiled pods was browning little after opening a seal. After 2days storage at room temperature and 21days storage at 4t, pods were deteriorated. The hardness was much lower in boiled kernels than raw kernels and decreased when the storage period elapsed.

Study for Effect of Changes in Thermal Properties on Cooling Process in Running Hot Steel Strip After Hot Rolling (열간압연 이후 주행하는 고온 강재의 냉각해석에서 소재의 물성변화 효과 연구)

  • Park, Il Seouk;Park, Jung Eun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.459-465
    • /
    • 2013
  • In the manufacturing process of steel plates, materials at high temperatures above $800^{\circ}C$ are rapidly cooled by using a circular impinging water jet to determine their strength and toughness. In this study, the basic heat and fluid flow is solved by using the existing numerical model for boiling heat transfer. Actually, steel undergoes a phase change from austenite to ferrite or bainite during the cooling process. The phase change induces changes in its thermal properties. Instead of directly solving the phase change and the material cooling together, we solve the heat transfer only by applying the thermal properties that vary with temperature, which is already known from other studies. The effects of the changes in the thermal properties on the cooling of steel and the necessity of calculating the phase change are discussed.

Investigation on effect of surface properties on droplet impact cooling of cladding surfaces

  • Wang, Zefeng;Qu, Wenhai;Xiong, Jinbiao;Zhong, Mingjun;Yang, Yanhua
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.508-519
    • /
    • 2020
  • During transients or accidents, the reactor core is uncovered, and droplets entrained above the quench front collides with the uncovered fuel rod surface. Droplet impact cooling can reduce the peak cladding temperature. Besides zirconium-based cladding, versatile accidental tolerant fuel (ATF) claddings, including FeCrAl, have been proposed to increase the accident coping time. In order to investigate the effect of surface properties on droplet impact cooling of cladding surfaces, the droplet impact phenomena are photographed on the FeCrAl and zircaloy-4 (Zr-4) surfaces under different conditions. On the oxidized FeCrAl surface, the Leidenfrost phenomenon is not observed even when the surface temperature is as high as 550 ℃ with We > 30. Comparison of the impact behaviors observed on different materials shows that nucleate and transition boiling is more intensive on surfaces with larger thermal conductivity. The Leidenfrost point temperature (LPT) decreases with the solid thermal effusivity (${\sqrt{k{\rho}C_p}}$). However, the CHF temperature is relatively insensitive to the surface oxidation and Weber number. Droplet spreading diameter is analyzed quantitatively in the film boiling stage. Based on the energy balance a correlation is proposed for droplet maximum spreading factor. A mechanistic model is also developed for the LPT based on homogeneous nucleation theory.

Effect of Neutral Ligand(L) on the Precursor Characteristics of (hfac)Cu(I)L and on Cu MOCVD Process (중성리간드(L)가 (hfac)Cu(I)L 전구체의 특성 및 구리 MOCVD 공정에 미치는 영향)

  • 최경근;김경원;이시우
    • Korean Journal of Materials Research
    • /
    • v.11 no.3
    • /
    • pp.184-184
    • /
    • 2001
  • The effect of neutral ligand(L) on the precursor characteristics of (hfac)Cu(I)-L and on Cu MOCVD Process was studied. The neutral ligands of (hac)Cu(I)-L$_{x}$, such as ATMS(allytrimethylsilane), VTMS(vinyltrimethylsilane), VCH(vinylcyclohexane), MP(4-methyl-1-pentene), ACP(allylcyclopentane), and DMB(3,3-dimethyl-1-butene) were investigated. When the dissociation temperature of Cu(I)-L bond is low, low temperature deposition below $100^{\circ}C$ is possible and the resistivity of the film is low. But thermal stability of the precursor is low in this case. The resistivity is almost the same regardless of L at the deposition temperature range of $125~175^{\circ}C$. The resistivity is increased as the molecular weight of L becomes higher above $225^{\circ}C$ The vapor pressure of the precursor was closely related to the boiling point of L, the lower the boiling point of L, the higher the vapor pressurere.