• Title/Summary/Keyword: Filling ratio

Search Result 526, Processing Time 0.025 seconds

Filling System Analysis for Cavity in Ground using DEM (개별요소해석을 이용한 지반공동부 주입시스템 분석)

  • Han, Jung-Geun;Kim, Young-Ho;You, Seung-Kyong;Chung, Da-Som
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.119-126
    • /
    • 2018
  • The ground cavity occurring in the downtown area is on the increase. However, when ground subsidence is occurred or a cavity that causes it to occur is found, time and economic difficulties are follwed in recovery. In advance, this study conducted to develop filling system for reinforcement material which is consist of polymer pouch and admixture as a new filler material. We developed a polymer pouch that is water soluble in the precedent study. Since the filling system is trenchless method and don't need any plant, it has time and economic benefits. This system uses air pressure to filling out cavity in a short time. We estimate this system with respect to filling speed and filling ratio by model experiment. In addition, we could confirm various filling condition using DEM Analysis. So, we could develop filling system and analysis it.

Manufacturing of Copper(II) Oxide Powder for Electroplating from NaClO3 Type Etching Wastes

  • Hong, In Kwon;Lee, Seung Bum;Kim, Sunhoe
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.60-67
    • /
    • 2020
  • In this study, copper (II) oxide powder for electroplating was prepared by recovering CuCl2 from NaClO3 type etching wastes via recovered non-sintering two step chemical reaction. In case of alkali copper carbonate [mCuCo3·nCu(OH)2], first reaction product, CuCo3 is produced more than Cu(OH)2 when the reaction molar ratio of sodium carbonate is low, since m is larger than n. As the reaction molar ratio of sodium carbonate increased, m is larger than n and Cu(OH)2 was produced more than CuCO3. In the case of m has same values as n, the optimum reaction mole ratio was 1.44 at the reaction temperature of 80℃ based on the theoretical copper content of 57.5 wt. %. The optimum amount of sodium hydroxide was 120 g at 80℃ for production of copper (II) oxide prepared by using basic copper carbonate product of first reaction. At this time, the yield of copper (II) oxide was 96.6 wt.%. Also, the chloride ion concentration was 9.7 mg/L. The properties of produced copper (II) oxide such as mean particle size, dissolution time for sulfuric acid, and repose angle were 19.5 mm, 64 second, and 34.8°, respectively. As a result of the hole filling test, it was found that the copper oxide (II) prepared with 120 g of sodium hydroxide, the optimum amount of basic hydroxide for copper carbonate, has a hole filling of 11.0 mm, which satisfies the general hole filling management range of 15 mm or less.

Compression characteristics of filling gangue and simulation of mining with gangue backfilling: An experimental investigation

  • Wang, Changxiang;Shen, Baotang;Chen, Juntao;Tong, Weixin;Jiang, Zhe;Liu, Yin;Li, Yangyang
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.485-495
    • /
    • 2020
  • Based on the movement characteristics of overlying strata with gangue backfilling, the compression test of gangue is designed. The deformation characterristics of gangue is obtained based on the different Talbot index. The deformation has a logarithmic growth trend, including sharp deformation stage, linear deformation stage, rheological stage, and the resistance to deformation changes in different stages. The more advantageous Talbot gradation index is obtained to control the surface subsidence. On the basis of similarity simulation test with gangue backfilling, the characteristics of roof failure and the evolution of the supporting force are analyzed. In the early stage of gangue backfilling, beam structure damage directly occurs at the roof, and the layer is separated from the overlying rock. As the working face advances, the crack arch of the basic roof is generated, and the separation layer is closed. Due to the supporting effect of filling gangue, the stress concentration in gangue backfilling stope is relatively mild. Based on the equivalent mining height model of gangue backfilling stope, the relationship between full ratio and mining height is obtained. It is necessary to ensure that the gradation of filling gangue meets the Talbot distribution of n=0.5, and the full ratio meets the protection grade requirements of surface buildings.

Effects of Current Density and Organic Additives on via Copper Electroplating for 3D Packaging (3D패키지용 Via 구리충전 시 전류밀도와 유기첨가제의 영향)

  • Choi, Eun-Hey;Lee, Youn-Seoung;Rha, Sa-Kyun
    • Korean Journal of Materials Research
    • /
    • v.22 no.7
    • /
    • pp.374-378
    • /
    • 2012
  • In an effort to overcome the problems which arise when fabricating high-aspect-ratio TSV(through silicon via), we performed experiments involving the void-free Cu filling of a TSV(10~20 ${\mu}m$ in diameter with an aspect ratio of 5~7) by controlling the plating DC current density and the additive SPS concentration. Initially, the copper deposit growth mode in and around the trench and the TSV was estimated by the change in the plating DC current density. According to the variation of the plating current density, the deposition rate during Cu electroplating differed at the top and the bottom of the trench. Specifically, at a current density 2.5 mA/$cm^2$, the deposition rate in the corner of the trench was lower than that at the top and on the bottom sides. From this result, we confirmed that a plating current density 2.5 mA/$cm^2$ is very useful for void-free Cu filling of a TSV. In order to reduce the plating time, we attempted TSV Cu filling by controlling the accelerator SPS concentration at a plating current density of 2.5 mA/$cm^2$. A TSV with a diameter 10 ${\mu}m$ and an aspect ratio of 7 was filled completely with Cu plating material in 90 min at a current density 2.5 mA/$cm^2$ with an addition of SPS at 50 mg/L. Finally, we found that TSV can be filled rapidly with plated Cu without voids by controlling the SPS concentration at the optimized plating current density.

A Study on the Characteristics of Condensation Heat Transfer of Two-Phase Loop Thermosyphons (루우프형 2상 유동 열사이폰의 응축열전달 특성에 관한 연구)

  • Park, Jong-Un;Cho, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.4
    • /
    • pp.894-901
    • /
    • 2014
  • This study concerns the performance of condensation heat transfer in two-phase loop thermosyphons. In the present work, R134a has been used as the working fluid. Liquid fill charge ratio defined by the ratio of working fluid volume to total internal volume of thermosyphon, heat flux and wind speed of condensation have been used as the experimental parameters. The results show that the filling rate of working fluid and heat flux are very important factors for the operation of two-phase loop thermosyphons. The optimum liquid fill charge ratio for the best condensation heat transfer rate was 80%.

An Experimetal Study on the Damping Characteristics of Liquid Sloshing (액체 Sloshing에 의한 진동감쇠기에 관한 실험적 연구)

  • Yang, Bo-Suk;Jun, Soon-Ki;Kim, Won-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.1
    • /
    • pp.96-104
    • /
    • 1991
  • This study is concerned with the fluid sloshing dampers to suppress the high vibration in the resonance and operating regions. An experimental investigation was conducted to determine the logarithmic decrement, natural frequency, tuning frequency ratio of oscillation of liquids contained in an spherical rigid container. The decay of the vibration amplitude was studied for the range of liquid filling ratio in container. The results of the investigation indicate that the sloshing motion of liquids results in an increase in the available effective damping when the filling ratio is in the region near H/R=1.3-1.6.

  • PDF

High Speed Cu Filling into Tapered TSV for 3-dimensional Si Chip Stacking (3차원 Si칩 실장을 위한 경사벽 TSV의 Cu 고속 충전)

  • Kim, In Rak;Hong, Sung Chul;Jung, Jae Pil
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.5
    • /
    • pp.388-394
    • /
    • 2011
  • High speed copper filling into TSV (through-silicon-via) for three dimensional stacking of Si chips was investigated. For this study, a tapered via was prepared on a Si wafer by the DRIE (deep reactive ion etching) process. The via had a diameter of 37${\mu}m$ at the via opening, and 32${\mu}m$ at the via bottom, respectively and a depth of 70${\mu}m$. $SiO_2$, Ti, and Au layers were coated as functional layers on the via wall. In order to increase the filling ratio of Cu into the via, a PPR (periodic pulse reverse) wave current was applied to the Si chip during electroplating, and a PR (pulse reverse) wave current was applied for comparison. After Cu filling, the cross sections of the vias was observed by FE-SEM (field emission scanning electron microscopy). The experimental results show that the tapered via was filled to 100% at -5.85 mA/$cm^2$ for 60 min of plating by PPR wave current. The filling ratio into the tapered via by the PPR current was 2.5 times higher than that of a straight via by PR current. The tapered via by the PPR electroplating process was confirmed to be effective to fill the TSV in a short time.

Evaluation of Treatability on DOC and THMs According to Periodic Cumulative Filling of Granular Activated Carbon (GAC) (입상활성탄 주기적 누적충진에 따른 용존유기탄소와 THMs 처리능 평가)

  • Son, Hee-Jong;Kim, Sang-Goo;Seo, Chang-Dong;Yoom, Hoon-Sik;Ryu, Dong-Choon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.9
    • /
    • pp.513-518
    • /
    • 2017
  • In this paper, the removal efficiency of THMs (Trihalomethanes) and DOC (Disolved organic carbon) was compared under different GAC (Granual activated carbon) filling methods. One method is "full filling method" in which column is fully filled with GAC at once and the other is "periodic cumulative method" in which column is partially filled with GAC (10, 20, 33 and 50% of total column volume) and added each ratio during 300 days. The effluent concentration of both THMs and DOC under full filling method was low during the initial period, however, steadily increased with operating time. In the contrast, with periodic cumulative method, it maintained (relatively) evenly during the operating period. Periodic cumulative method was more efficient for removing THMs than full filling method. However, when the ratio of chlorodibromomethane or bromoform among THMs was significantly higher than chloroform and bromodichloromethane, full filling method was more efficient than periodic cumulative method. Full filling method had benefit to total DOC removal and control of average DOC concentration in effluent. Overall, periodic cumulative method is more efficient to equalize the removal efficiency of THMs and DOC, so the more frequent refilling of column with small amount of GAC is more advantageous.

An Experimental Study on Rectangular Box Sloshing (박스형 모델에 의한 슬로싱 하중에 관한 실험적 연구)

  • Jung, Dong-Woo;Chun, Soo-Sung;Park, Jun-Soo;Kwon, Sun-Hong;Jang, Taek-Soo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.386-391
    • /
    • 2006
  • This study presents experimental results of sloshing phenomenon done on rectangular box. A simple harmonic excitation was done on the box. Two kinds of filling ratio, 20% and 30% of height, were tested. A total of 15 pressure sensors were installed to monitor the impact pressure. Each test was repeated for 20 times to ensure the repeatability. The high speed camera captured the flaw filed and the corresponding pressure were synchronize with video signal so that the video image can help the interpretation of the impact pressure. The two filling ratio made difference in the flaw characteristic and impact pressure. The use of high speed camera made it possible to understand the bubble generation mechanism. The pressure time histories were presented.

  • PDF

Optimal Gating System Design of Escalator Step Die Casting Part by Using Taguchi Method (실험계획법에 의한 승강기용 구동부 주조품의 다이캐스팅 탕구방안 최적화)

  • Jeong, Won-Je;Yoon, Hyung-Pyo;Hong, Sun-Kuk;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.97-103
    • /
    • 2000
  • In this study, a design of experiment, Taguchi method, was applied to optimize gating system design of escalator step die casting parts. Six shape factors which affect filling sequence of melt are adopted and divided into two levels respectively. Initial feeding differences of melt which were calculated by using S/N(signal-to-noise) ratio in each condition were demonstrated with the simulation of Flow-3D software program. Variations of S/N ratio according to shape factors were obtained and the optimal condition of gating system could also be obtained. It could be found that width of gate, contact angle of gate, thickness of runner are more effective factors on the filling sequence of melt than the others in this case of escalator step die casting parts. It showed that the economical gating system and sound filling sequence of melt were obtained by using Taguchi method.

  • PDF