Browse > Article
http://dx.doi.org/10.12989/gae.2020.20.6.485

Compression characteristics of filling gangue and simulation of mining with gangue backfilling: An experimental investigation  

Wang, Changxiang (College of Mining and Safety Engineering, Shandong University of Science and Technology)
Shen, Baotang (College of Mining and Safety Engineering, Shandong University of Science and Technology)
Chen, Juntao (College of Mining and Safety Engineering, Shandong University of Science and Technology)
Tong, Weixin (College of Mining and Safety Engineering, Shandong University of Science and Technology)
Jiang, Zhe (College of Mining and Safety Engineering, Shandong University of Science and Technology)
Liu, Yin (College of Mining and Safety Engineering, Shandong University of Science and Technology)
Li, Yangyang (College of Mining and Safety Engineering, Shandong University of Science and Technology)
Publication Information
Geomechanics and Engineering / v.20, no.6, 2020 , pp. 485-495 More about this Journal
Abstract
Based on the movement characteristics of overlying strata with gangue backfilling, the compression test of gangue is designed. The deformation characterristics of gangue is obtained based on the different Talbot index. The deformation has a logarithmic growth trend, including sharp deformation stage, linear deformation stage, rheological stage, and the resistance to deformation changes in different stages. The more advantageous Talbot gradation index is obtained to control the surface subsidence. On the basis of similarity simulation test with gangue backfilling, the characteristics of roof failure and the evolution of the supporting force are analyzed. In the early stage of gangue backfilling, beam structure damage directly occurs at the roof, and the layer is separated from the overlying rock. As the working face advances, the crack arch of the basic roof is generated, and the separation layer is closed. Due to the supporting effect of filling gangue, the stress concentration in gangue backfilling stope is relatively mild. Based on the equivalent mining height model of gangue backfilling stope, the relationship between full ratio and mining height is obtained. It is necessary to ensure that the gradation of filling gangue meets the Talbot distribution of n=0.5, and the full ratio meets the protection grade requirements of surface buildings.
Keywords
mining under village; compression test of filling gangue; Talbot gradation index; gangue backfilling similarity simulation test; full ratio;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Poulsen, B.A. and Adhikary, D.P. (2013), "A numerical study of the scale effect in coal strength", Int. J. Rock Mech. Min. Sci., 63, 62-71. https://doi.org/10.1016/j.ijrmms.2013.06.006.   DOI
2 Shahriar, M.A., Sivakugan, N., Das, B.M., Urquhart, A. and Tapiolas, M. (2015), "Water table correction factors for settlements of shallow foundations in granular soils", Int. J. Geomech., 15(1), 06014015. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000391.   DOI
3 State Administration of Coal Industry (2017), Regulations for the Preservation and Mining of Coal Pillars in Buildings, Water Bodies, Railways and Main Roadways, Coal Industry Publishing House, Beijing, China.
4 Sun, W., Du, H., Zhou, F. and Shao, J. (2019), "Experimental study of crack propagation of rock-like specimens containing conjugate fractures", Geomech. Eng., 17(4), 323-331. https://doi.org/10.12989/gae.2019.17.4.323.   DOI
5 Talbot, A.N., Brown, H.A. and Richart, F.E. (1923). "The strength of concrete-its relation to the cement, aggregates and water", University of Illinois at Urbana Champaign, Illinois, U.S.A.
6 Vogler, D., Amann, F., Bayer, P. and Elsworth, D. (2016), "Permeability evolution in natural fractures subject to cyclic loading and gouge formation", Rock Mech. Rock Eng., 49, 3463-3479. https://doi.org/10.1007/s00603-016-1022-0.   DOI
7 Wang, C., Jiang, N., Shen, B., Sun, X., Zhang, B., Lu, Y. and Li, Y. (2019), "Distribution and evolution of residual voids in longwall old goaf", Geomech. Eng., 19(2), 105-114. https://doi.org/10.12989/gae.2019.19.2.105.   DOI
8 Wang, C., Lu, Y., Li, Y., Zhang, B. and Liang, Y. (2019), "Deformation process and prediction of filling gangue: A case study in China", Geomech. Eng., 18(4), 417-426. https://doi.org/10.12989/gae.2019.18.4.417.   DOI
9 Wang, H., Poulsen, B.A., Shen, B., Xue, S. and Jiang, Y. (2011), "The influence of roadway backfill on the coal pillar strength by numericalinvestigation", Int. J. Rock Mech. Min. Sci., 48(3), 443-450. https://doi.org/10.1016/j.ijrmms.2010.09.007.   DOI
10 Rozenblat, Y., Portnikov, D., Levy, A., Kalman, H., Aman, S. and Tomas, J. (2011), "Strength distribution of particles under compression", Powder Technol., 208(1), 215-224. https://doi.org/10.1016/j.powtec.2010.12.023.   DOI
11 Chen, S.J., Yin, D. W., Jiang, N., Wang, F. and Guo, W.J. (2019), "Simulation study on effects of loading rate on uniaxial compression failure of composite rock-coal layer", Geomech. Eng., 17(4), 333-342. https://doi.org/10.12989/gae.2019.17.4.333.   DOI
12 Coop, M.R., Sorensen, K.K., Freitas, T.B. and Georgoutsos, G (2004), "Particle breakage during shearing of a carbonate sand", Geotechnique, 54(3), 157-163. https://doi.org/10.1680/geot.2004.54.3.157.   DOI
13 Donohue, S., O'Sullivan, C. and Long, M. (2009), "Particle breakage during cyclic triaxial loading of a carbonate sand", Geotechnique, 59(5), 477-482. https://doi.org/10.1680/geot.2008.T.003.   DOI
14 Friedemann, J., Wagner, A., Heinze, A., Krzack, S. and Meyer, B. (2016), "Direct optical observation of coal particle fragmentation behavior in a drop-tube reactor", Fuel, 166, 382-391. https://doi.org/10.1016/j.fuel.2015.11.007.   DOI
15 Ghabchi, R., Zaman, M., Kazmee, H. and Singh, D. (2014), "Effect of shape parameters and gradation on laboratorymeasured permeability of aggregate bases", Int. J. Geomech., 15(4), 04014070. http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000397   DOI
16 Guo, W., Gu, Q., Tan, Y. and Hu, S. (2019), "Case studies of rock bursts in tectonic areas with facies change", Energies, 12(7), 1330. https://doi.org/10.3390/en12071330.   DOI
17 Gu, H., Tao, M., Wang, J., Jiang, H., Li, Q. and Wang, W. (2018), "Influence of water content on dynamic mechanical properties of coal", Geomech. Eng., 16(1), 85-95. https://doi.org/10.12989/gae.2018.16.1.085.   DOI
18 Guida, G., Bartoli, M., Casini, F. and Viggiani, G.M. (2016), "Weibull distribution to describe grading evolution of materials with crushable grains", Procedia Eng., 158, 75-80. https://doi.org/10.1016/j.proeng.2016.08.408.   DOI
19 Guo, G., Zhu, X., Zha, J. amd Wang, Q. (2014), "Subsidence prediction method based on equivalent mining height theory for solid backfilling mining", Trans. Nonferr. Metals Soc. China, 24(10), 3302-3308. https://doi.org/10.1016/S1003-6326(14)63470-1.   DOI
20 Guo, W. (2013), Backfill Mining Technology in Coal Mines, China Coal Industry Publishing House, Beijing, China.
21 Guo, W., Yu, F., Tan, Y. and Zhao, T. (2019), "Experimental study on the failure mechanism of layer-crack structure", Energy Sci. Eng., 1-22. https://doi.org/10.1002/ese3.407.
22 Hu, C., Wang, X., Mei, Y., Yuan, Y. and Zhang, S. (2018), "Compaction techniques and construction parameters of loess as filling material", Geomech. Eng., 15(6), 1143-1151. https://doi.org/10.12989/gae.2018.15.6.1143.   DOI
23 An, B., Miao, X., Zhang, J., Ju, F. and Zhou, N. (2016), "Overlying strata movement of recovering standing pillars with solid backfilling by physical simulation", Int. J. Min. Sci. Technol., 26(2), 301-307. https://doi.org/10.1016/j.ijmst.2015.12.017.   DOI
24 Zhang, X., Lin, J., Liu, J., Li, F. and Pang, Z. (2017), "Investigation of hydraulic-mechanical properties of paste backfill containing coal gangue-fly ash and its application in an underground coal mine", Energies, 10(9), 1309. https://doi.org/10.3390/en10091309.   DOI
25 Casini, F., Viggiani, G.M.B. and Springman, S.M. (2013), "Breakage of an artificial crushable material under loading", Granul. Matter 15(5), 661-673. https://doi.org/10.1007/s10035-013-0432-x   DOI
26 Yin, D., Chen, S. and Liu, X.Q. (2018), "Effect of joint angle in coal on failure mechanical behavior of roof rock-coal combined body", Quart. J. Eng. Geol. Hydrogeol., 51(2), 202-209. https://doi.org/10.1144/qjegh2017-041.   DOI
27 Zhang, B. and Meng, Z. (2019), "Experimental study on floor failure of coal mining above confined water", Arab. J. Geosci., 12(4), 114-123. https://doi.org/10.1007/s12517-019-4250-2.   DOI
28 Zhang, J., Li, B., Zhou, N. and Zhang, Q. (2016), "Application of solid backfilling to reduce hard-roof caving and longwall coal face burst potential", Int. J. Rock Mech. Min. Sci., 88, 197-205. http://dx.doi.org/10.1016%2Fj.ijrmms.2016.07.025.   DOI
29 Zhang, Q., Zhang, J., Han, X., Ju, F., Tai, Y. and Li, M. (2016), "Theoretical research on mass ratio in solid backfill coal mining", Environ. Earth Sci., 75(7), 1-11. https://doi.org/10.1007/s12665-015-5234-5.   DOI
30 Indraratna, B. and Locke, M.R (1999), "Design methods for granular filters-Critical review", Geotech. Eng., 137(3), 137-147. https://doi.org/10.1680/gt.1999.370303.   DOI
31 Karacan, C.O. (2010), "Prediction of porosity and permeability of caved zone in longwall gobs", Transp. Porous Media, 82, 413-439. https://doi.org/10.1007/s11242-009-9437-7.   DOI
32 Kratzsch, I.H. (1983), "Mining subsidence engineering", Environ. Geol. Water Sci., 8(3), 133-136. https://doi.org/10.1007/BF02509900.   DOI
33 Ma, D., Mohammad, R., Yu, H.S. and Bai, H.B. (2017), "Variations of hydraulic properties of granular sandstones during water inrush: Effect of small particle migration", Eng. Geol., 217(30) 61-70. https://doi.org/10.1016/j.enggeo.2016.12.006.   DOI
34 Li, J., Huang, Y., Qiao, M., Chen, Z., Song, T., Kong, G., Gao, H. and Guo, L. (2018), "Effects of water soaked height on the deformation and crushing characteristics of loose gangue backfill material in solid backfill coal mining", Processes, 6(6), 64. https://doi.org/10.3390/pr6060064   DOI
35 Zhao, J., Jiang, N. and Yin, L. (2019), "The effects of mining subsidence and drainage improvements on a waterlogged area", Bull. Eng. Geol. Environ., 78(5), 3815-3831. https://doi.org/10.1007/s10064-018-1356-9.   DOI
36 Zhao, J., Yin, L. and Guo, W. (2018), "Stress-seepage coupling of cataclastic rock masses based on digital image technologies", Rock Mech. Rock Eng., 51(8), 2355-2372. https://doi.org/10.1007/s00603-018-1474-5.   DOI
37 Li, M., Zhang, J. and Gao, R. (2016), "Compression characteristics of solid wastes as backfill materials", Adv. Mater. Sci. Eng., 2496194. http://dx.doi.org/10.1155/2016/2496194.
38 Li, Y.Y., Zhang, S.C. and Zhang, X. (2018), "Classification and fractal characteristics of coal rock fragments under uniaxial cyclic loading conditions", Arab. J. Geosci., 11(9), 201-212. https://doi.org/10.1007/s12517-018-3534-2.   DOI
39 Liu, X.S., Gu, Q.H., Tan, Y.L., Ning, J.G. and Jia, Z. (2019). "Mechanical Characteristics and Failure Prediction of Cement Mortar with a Sandwich Structure". Minerals, 9(3), 143. https://doi.org/10.3390/min9030143   DOI
40 Ma, D., Duan, H.Y., Liu, J.F., Li, X.B. and Zhou, Z.L. (2019), "The role of gangue on the mitigation of mining-induced hazards and environmental pollution: An experimental investigation", Sci. Total Environ., 664(10) 436-448. https://doi.org/10.1016/j.scitotenv.2019.02.059.   DOI
41 Marcin, L. and Miguel, A. (2016), "Characteristics of carbon dioxide sorption in coal and gas shale-The effect of particle size", J. Nat. Gas Sci. Eng., 28, 558-565. https://doi.org/10.1016/j.jngse.2015.12.037.   DOI
42 Muriithi, G.N., Petrik, L.F., Gitari, W.M. and Doucet, F.J. (2017), "Synthesis and characterization of hydrotalcite from South African Coal fly ash", Powder Technol., 312, 299-309. https://doi.org/10.1016/j.powtec.2017.02.018.   DOI