• Title/Summary/Keyword: Filling rate

Search Result 493, Processing Time 0.028 seconds

Variation on Estimated Values of Radioactivity Concentration According to the Change of the Acquisition Time of SPECT/CT (SPECT/CT의 획득시간 증감에 따른 방사능농도 추정치의 변화)

  • Kim, Ji-Hyeon;Lee, Jooyoung;Son, Hyeon-Soo;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.25 no.2
    • /
    • pp.15-24
    • /
    • 2021
  • Purpose SPECT/CT was noted for its excellent correction method and qualitative functions based on fusion images in the early stages of dissemination, and interest in and utilization of quantitative functions has been increasing with the recent introduction of companion diagnostic therapy(Theranostics). Unlike PET/CT, various conditions like the type of collimator and detector rotation are a challenging factor for image acquisition and reconstruction methods at absolute quantification of SPECT/CT. Therefore, in this study, We want to find out the effect on the radioactivity concentration estimate by the increase or decrease of the total acquisition time according to the number of projections and the acquisition time per projection among SPECT/CT imaging conditions. Materials and Methods After filling the 9,293 ml cylindrical phantom with sterile water and diluting 99mTc 91.76 MBq, the standard image was taken with a total acquisition time of 600 sec (10 sec/frame × 120 frames, matrix size 128 × 128) and also volume sensitivity and the calibration factor was verified. Based on the standard image, the comparative images were obtained by increasing or decreasing the total acquisition time. namely 60 (-90%), 150 (-75%), 300 (-50%), 450 (-25%), 900 (+50%), and 1200 (+100%) sec. For each image detail, the acquisition time(sec/frame) per projection was set to 1.0, 2.5, 5.0, 7.5, 15.0 and 20.0 sec (fixed number of projections: 120 frame) and the number of projection images was set to 12, 30, 60, 90, 180 and 240 frames(fixed time per projection:10 sec). Based on the coefficients measured through the volume of interest in each acquired image, the percentage of variation about the contrast to noise ratio (CNR) was determined as a qualitative assessment, and the quantitative assessment was conducted through the percentage of variation of the radioactivity concentration estimate. At this time, the relationship between the radioactivity concentration estimate (cps/ml) and the actual radioactivity concentration (Bq/ml) was compared and analyzed using the recovery coefficient (RC_Recovery Coefficients) as an indicator. Results The results [CNR, radioactivity Concentration, RC] by the change in the number of projections for each increase or decrease rate (-90%, -75%, -50%, -25%, +50%, +100%) of total acquisition time are as follows. [-89.5%, +3.90%, 1.04] at -90%, [-77.9%, +2.71%, 1.03] at -75%, [-55.6%, +1.85%, 1.02] at -50%, [-33.6%, +1.37%, 1.01] at -25%, [-33.7%, +0.71%, 1.01] at +50%, [+93.2%, +0.32%, 1.00] at +100%. and also The results [CNR, radioactivity Concentration, RC] by the acquisition time change for each increase or decrease rate (-90%, -75%, -50%, -25%, +50%, +100%) of total acquisition time are as follows. [-89.3%, -3.55%, 0.96] at - 90%, [-73.4%, -0.17%, 1.00] at -75%, [-49.6%, -0.34%, 1.00] at -50%, [-24.9%, 0.03%, 1.00] at -25%, [+49.3%, -0.04%, 1.00] at +50%, [+99.0%, +0.11%, 1.00] at +100%. Conclusion In SPECT/CT, the total coefficient obtained according to the increase or decrease of the total acquisition time and the resulting image quality (CNR) showed a pattern that changed proportionally. On the other hand, quantitative evaluations through absolute quantification showed a change of less than 5% (-3.55 to +3.90%) under all experimental conditions, maintaining quantitative accuracy (RC 0.96 to 1.04). Considering the reduction of the total acquisition time rather than the increasing of the image acquiring time, The reduction in total acquisition time is applicable to quantitative analysis without significant loss and is judged to be clinically effective. This study shows that when increasing or decreasing of total acquisition time, changes in acquisition time per projection have fewer fluctuations that occur in qualitative and quantitative condition changes than the change in the number of projections under the same scanning time conditions.

Effect of Plowing Frequency and Sowing Dates on the Agronomic Characteristics, Feed Value, Weed Yield and Palatability of Silage Corn (경운횟수와 파종기 이동이 사일리지용 옥수수의 생육특성, 사료가치, 잡초발생 및 가축의 기호성에 미치는 영향)

  • Lee, Sang-Moo;Kim, Byoung-Tae;Hwang, Joo-Hwan;Jeon, Byoung-Tae;Moon, Sang-Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.27 no.3
    • /
    • pp.209-218
    • /
    • 2007
  • This experiment was conducted to investigate effect of plowing frequency and sowing dates on the agronomic characteristics, feed value, weed yield and palatability of silage corn. Treatments were a basal treatment(C: May 5 seeding, plowing once, weeding control once), T1(May 12 seeding, plowing twice, weeding control 0 time), T2(May 19 seeding, plowing three times, weeding control 0 time, T3(May 26 seeding, plowing four times, weeding control 0 time) and T4(June 2 seeding, plowing five times, weeding control 0 time). The experiment was performed at the College of Life and Natural Sciences of Sangju University in Sangju in 2006. The plant height and ear height showed highly in order to C > T1 > T2 > T3 > T4 treatment, leaf length was the highest at T2 (96.0cm). Leaf width and number of dead leaf were the highest at C and T3 (11.2cm), C, C and T1 (4.6), respectively. Stem diameter was the highest at T3 as 31mm, while T2 was the lowest as 25mm (p<0.05). Ear circle showed highly in order of C > T1 > T4 > T3 > T4 (p<0.05), and tip filling degree was the highest at C treatment as 8.8, while T4 treatment was the lowest as 6.0 (p<0.05). The stem hardness and grain hardness were C < T1 < T2 < T3 < T4 (p<0.05). Stem saccharinity was T1(6.1%) was the highest, while T2(3.0%) was the lowest(P<0.05). Fresh yield of weed was the lowest at C treatment as 500 kg/ha, but T1 treatment was the highest as 44,100 kg/ha (p<0.05). Weed coverage rate showed highly in order of T1 > T2 > T3 > T4 > C treatment (p<0.05). Fresh yield of corn was the highest at C treatment as T3,550 kg/ha, but T4 treatment was the lowest as 65,500 kg/ha (p<0.05). Dry matter yield of corn showed highly in order of C(26,978 kg/ha) > T1(26,130 kg/ha) > T2(20,255 kg/ha) > T3(20,255 kg/ha) > T4(17,508 kg/ha) treatment (p<0.05). Crude protein content was T1(7.69%) > T4(7.42%) > T2(6.34%) > T3(5.99%) > C(5.91%) treatment (p<0.05), and Crude fat content showed highly in order of C (2.13%) > T1(2.04%) > T2(1.96%) > T3(1.95%) > T4(1.84%) treatment. Relative palatability of Holstein, Korean native goat and spotted deer was the highest at C treatment, but Korean native cattle was the highest at T1 treatment.

The Impact of Bladder Volume on Acute Urinary Toxicity during Radiation Therapy for Prostate Cancer (전립선암의 방사선치료시 방광 부피가 비뇨기계 부작용에 미치는 영향)

  • Lee, Ji-Hae;Suh, Hyun-Suk;Lee, Kyung-Ja;Lee, Re-Na;Kim, Myung-Soo
    • Radiation Oncology Journal
    • /
    • v.26 no.4
    • /
    • pp.237-246
    • /
    • 2008
  • Purpose: Three-dimensional conformal radiation therapy (3DCRT) and intensity-modulated radiation therapy (IMRT) were found to reduce the incidence of acute and late rectal toxicity compared with conventional radiation therapy (RT), although acute and late urinary toxicities were not reduced significantly. Acute urinary toxicity, even at a low-grade, not only has an impact on a patient's quality of life, but also can be used as a predictor for chronic urinary toxicity. With bladder filling, part of the bladder moves away from the radiation field, resulting in a small irradiated bladder volume; hence, urinary toxicity can be decreased. The purpose of this study is to evaluate the impact of bladder volume on acute urinary toxicity during RT in patients with prostate cancer. Materials and Methods: Forty two patients diagnosed with prostate cancer were treated by 3DCRT and of these, 21 patients made up a control group treated without any instruction to control the bladder volume. The remaining 21 patients in the experimental group were treated with a full bladder after drinking 450 mL of water an hour before treatment. We measured the bladder volume by CT and ultrasound at simulation to validate the accuracy of ultrasound. During the treatment period, we measured bladder volume weekly by ultrasound, for the experimental group, to evaluate the variation of the bladder volume. Results: A significant correlation between the bladder volume measured by CT and ultrasound was observed. The bladder volume in the experimental group varied with each patient despite drinking the same amount of water. Although weekly variations of the bladder volume were very high, larger initial CT volumes were associated with larger mean weekly bladder volumes. The mean bladder volume was $299{\pm}155\;mL$ in the experimental group, as opposed to $187{\pm}155\;mL$ in the control group. Patients in experimental group experienced less acute urinary toxicities than in control group, but the difference was not statistically significant. A trend of reduced toxicity was observed with the increase of CT bladder volume. In patients with bladder volumes greater than 150 mL at simulation, toxicity rates of all grades were significantly lower than in patients with bladder volume less than 150 mL. Also, patients with a mean bladder volume larger than 100 mL during treatment showed a slightly reduced Grade 1 urinary toxicity rate compared to patients with a mean bladder volume smaller than 100 mL. Conclusion: Despite the large variability in bladder volume during the treatment period, treating patients with a full bladder reduced acute urinary toxicities in patients with prostate cancer. We recommend that patients with prostate cancer undergo treatment with a full bladder.