Browse > Article
http://dx.doi.org/10.5140/JASS.2009.26.2.141

CCD Photometric Observations and Light Curve Synthesis of the Near-Contact Binary XZ Canis Minoris  

Kim, Chun-Hwey (Dept. of Astronomy and Space Science, Chungbuk National University)
Park, Jang-Ho (Dept. of Astronomy and Space Science, Chungbuk National University)
Lee, Jae-Woo (Korea Astronomy and Space Science Institute)
Jeong, Jang-Hae (Dept. of Astronomy and Space Science, Chungbuk National University)
Oh, Jun-Young (Dept. of Astronomy and Space Science, Chungbuk National University)
Publication Information
Journal of Astronomy and Space Sciences / v.26, no.2, 2009 , pp. 141-156 More about this Journal
Abstract
Through the photometric observations of the near-contact binary, XZ CMi, new BV light curves were secured and seven times of minimum light were determined. An intensive period study with all published timings, including ours, confirms that the period of XZ CMi has varied in a cyclic period variation superposed on a secular period decrease over last 70 years. Assuming the cyclic change of period to occur by a light-time effect due to a third-body, the light-time orbit with a semi-amplitude of 0.0056d, a period of 29y and an eccentricity of 0.71 was calculated. The observed secular period decrease of $-5.26{\times}10^{-11}d/P$ was interpreted as a result of simultaneous occurrence of both a period decrease of $-8.20{\times}10^{-11}d/P$ by angular momentum loss (AML) due to a magnetic braking stellar wind and a period increase of $2.94{\times}10^{-11}d/P$ by a mass transfer from the less massive secondary to the primary components in the system. In this line the decreasing rate of period due to AML is about 3 times larger than the increasing one by a mass transfer in their absolute values. The latter implies a mass transfer of $\dot{M}_s=3.21{\times}10^{-8}M_{\odot}y^{-1}$ from the less massive secondary to the primary. The BV light curves with the latest Wilson-Devinney binary code were analyzed for two separate models of 8200K and 7000K as the photospheric temperature of the primary component. Both models confirm that XZ CMi is truly a near-contact binary with a less massive secondary completely filling Roche lobe and a primary inside the inner Roche lobe and there is a third-light corresponding to about 15-17% of the total system light. However, the third-light source can not be the same as the third-body suggested from the period study. At the present, however, we can not determine which one between two models is better fitted to the observations because of a negligible difference of $\sum(O-C)^2$ between them. The diversity of mass ratios, with which previous investigators were in disagreement, still remains to be one of unsolved problems in XZ CMi system. Spectroscopic observations for a radial velocity curve and high-resolution spectra as well as a high-precision photometry are needed to resolve some of remaining problems.
Keywords
eclipsing binary; XZ CMi; period variation; third-body; photometric solution;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Samec, R., Rook, I. B., Faulkner, D. R., Hawkins, N. C., & van Hamme, W. 2006, Observatory, 126, 255
2 Selam, S. O. & Demircan, O. 1994, Mem. Soc. Astron. Italiana, 65, 405
3 Shaw, J. S. 1994, Mem. Soc. Astron. Italiana, 65, 95
4 Shaw, J. S., Caillault, J.-P., & Schmitt, J. H. M. M. 1996, ApJ, 461, 951   DOI   ScienceOn
5 Terrell, D., Gunn, J. B., & Kaiser, D. H. 1994, PASP, 106, 149   DOI   ScienceOn
6 Terrell, D. & Henden, A. A. 2002, IBVS, No.5310
7 Terrell, D. & Wilson, R. E. 1990, PASP, 102, 646   DOI
8 Vilhu, O. 1982, A&A, 109, 17
9 Webbink, R. F. 1976, ApJ, 209, 829   DOI
10 Wilson, R. E. 1966, AJ, 71, 32   DOI
11 Wilson, R. E. & Biermann, P. 1976, A&A, 48, 349
12 Wilson, R. E. & Devinney, E. J. 1971, ApJ, 166, 605   DOI
13 Wood, D. B. 1972, A Computer Program for Modelling Nonspherical Eclipsing Binary Systems (Maryland: Goddard Space Flight Center)   DOI
14 Irwin, J. B. 1959, AJ, 64, 149   DOI
15 Kim, C.-H. 1991, AJ, 102, 1784   DOI
16 Kim, C.-H. 1995, Journal of Korean Astronomy & Space Sciences, 12, 179   과학기술학회마을
17 Kreiner, J. M., Kim, C.-H., & Nha, I.-S. 2001, An Atlas of (O-C) Diagrams of Eclipsing Binary Stars (Krakow: Press of Pedagogical Univ.)
18 Kukarkin, B. V., Kholopov, P. N., Efremov, Yu. N., Kukarkina, N. P., Kurochkin, N. E., Medvedeva, G. I., Perova, N. B., Fedorovich, V. P., & Frolov, M. S. 1969, General Catalogue of Variable Stars (Moscow: Nauka Publishing House)
19 Kwee, K. K. & van Woerden, H. 1956, BAN, 12, 327
20 Lee, J. W., Kim, C.-H., Kim, S.-L., Lee, C.-U., Han, W., & Koch, R. H. 2008, PASP, 120, 720   DOI   ScienceOn
21 Lucy, L. B. 1967, Zeit. f. Astrophys., 65, 89
22 Mardirossian, F. & Giuricin, G. 1981, A&A, 96, 415
23 van Hamme, W. 1993, AJ, 106, 2096   DOI
24 Press, W., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. 1992, Numerical Recipes (Cambridge: Cambridge Univ. Press), Chap.14
25 Pringle, J. E. 1975, MNRAS, 170, 633   DOI
26 Qian, S. 2002, MNRAS, 336, 1247   DOI   ScienceOn
27 Rafert, J. B. 1990, AJ, 100, 1253   DOI
28 Russell, H. N. & Merrill, J. E. 1952, Contrib. Princeton No.26
29 이충욱, 박성수, 김천휘, 변용익 2003, 한국우주과학회, 20, 143   과학기술학회마을   DOI   ScienceOn
30 Bradstreet, D. H. & Guinan, E. F. 1994, in Interacting Binary Stars, ed. A. W. Shafter (San Fransisco: ASP), 56, 228
31 Drilling, J. S. & Landolt, A. U. 1999, Allen's Astrophysical Quantities, ed. A. N. Cox (Los Alamos: Springer), p.382
32 Gimenez, A. & Costa, V. 1979, IBVS, No.1643
33 Gotz, W. & Wenzel, W. 1967, Mitt. Veranderl. Sterne, 4, 121
34 Guinan, E. F. & Bradstreet, D. H. 1988, in Formation and Evolution of Low Mass Stars, eds. A. K. Dupree & M. T. V. T. Lago (Dordrecht: Kluwer), p.345
35 Hilditch, R. W., King, D. J., & McFarlane, T. M. 1988, MNRAS, 231, 341   DOI
36 Hoffmeister, C. 1934, AN, 253, 195
37 Irwin, J. B. 1952, ApJ, 116, 11