DOI QR코드

DOI QR Code

The Impact of Bladder Volume on Acute Urinary Toxicity during Radiation Therapy for Prostate Cancer

전립선암의 방사선치료시 방광 부피가 비뇨기계 부작용에 미치는 영향

  • Lee, Ji-Hae (Department of Radiation Oncology, Ewha Womans University College of Medicine) ;
  • Suh, Hyun-Suk (Department of Radiation Oncology, Ewha Womans University College of Medicine) ;
  • Lee, Kyung-Ja (Department of Radiation Oncology, Ewha Womans University College of Medicine) ;
  • Lee, Re-Na (Department of Radiation Oncology, Ewha Womans University College of Medicine) ;
  • Kim, Myung-Soo (Department of Radiation Oncology, Ewha Womans University College of Medicine)
  • 이지혜 (이화여자대학교 의학전문대학원 방사선종양학교실) ;
  • 서현숙 (이화여자대학교 의학전문대학원 방사선종양학교실) ;
  • 이경자 (이화여자대학교 의학전문대학원 방사선종양학교실) ;
  • 이레나 (이화여자대학교 의학전문대학원 방사선종양학교실) ;
  • Published : 2008.12.31

Abstract

Purpose: Three-dimensional conformal radiation therapy (3DCRT) and intensity-modulated radiation therapy (IMRT) were found to reduce the incidence of acute and late rectal toxicity compared with conventional radiation therapy (RT), although acute and late urinary toxicities were not reduced significantly. Acute urinary toxicity, even at a low-grade, not only has an impact on a patient's quality of life, but also can be used as a predictor for chronic urinary toxicity. With bladder filling, part of the bladder moves away from the radiation field, resulting in a small irradiated bladder volume; hence, urinary toxicity can be decreased. The purpose of this study is to evaluate the impact of bladder volume on acute urinary toxicity during RT in patients with prostate cancer. Materials and Methods: Forty two patients diagnosed with prostate cancer were treated by 3DCRT and of these, 21 patients made up a control group treated without any instruction to control the bladder volume. The remaining 21 patients in the experimental group were treated with a full bladder after drinking 450 mL of water an hour before treatment. We measured the bladder volume by CT and ultrasound at simulation to validate the accuracy of ultrasound. During the treatment period, we measured bladder volume weekly by ultrasound, for the experimental group, to evaluate the variation of the bladder volume. Results: A significant correlation between the bladder volume measured by CT and ultrasound was observed. The bladder volume in the experimental group varied with each patient despite drinking the same amount of water. Although weekly variations of the bladder volume were very high, larger initial CT volumes were associated with larger mean weekly bladder volumes. The mean bladder volume was $299{\pm}155\;mL$ in the experimental group, as opposed to $187{\pm}155\;mL$ in the control group. Patients in experimental group experienced less acute urinary toxicities than in control group, but the difference was not statistically significant. A trend of reduced toxicity was observed with the increase of CT bladder volume. In patients with bladder volumes greater than 150 mL at simulation, toxicity rates of all grades were significantly lower than in patients with bladder volume less than 150 mL. Also, patients with a mean bladder volume larger than 100 mL during treatment showed a slightly reduced Grade 1 urinary toxicity rate compared to patients with a mean bladder volume smaller than 100 mL. Conclusion: Despite the large variability in bladder volume during the treatment period, treating patients with a full bladder reduced acute urinary toxicities in patients with prostate cancer. We recommend that patients with prostate cancer undergo treatment with a full bladder.

목 적: 국소적 전립선암에 대한 근치적 목적의 방사선치료시 3차원 입체조형방사선치료(3-dimensional conformal radiotherapy, 3DCRT) 또는 세기조절방사선치료(intensity modulated radiotherapy, IMRT)를 시행하면 직장의 부작용이 현저히 감소하지만 비뇨기계 부작용의 발생률은 감소하지 않는다. 방사선 치료로 인한 급성 비뇨기계 부작용은 환자의 삶의 질을 저하시킬 뿐 아니라 만성 비뇨기계 부작용의 발생을 증가시킨다. 따라서 비뇨기계 부작용을 줄이기 위해 방광을 채운 상태에서 방사선치료를 하는 방법이 제안되었는데 이 경우 방사선 조사야에 포함되는 방광의 면적이 줄어들어 부작용이 감소한다고 알려져 있다. 본 연구에서는 전립선암의 방사선치료시 방광의 부피가 급성 비뇨기계 부작용에 미치는 영향에 대하여 알아보고자 한다. 대상 및 방법: 전립선암으로 근치적 목적의 방사선치료를 받은 환자 42명을 대상으로 하였으며 대조군과 실험군이 각각 21명씩 포함되었다. 대조군은 본 연구가 계획되기 전에 방광 조절을 하지 않고 방사선치료를 시행 받은 환자 중 무작위로 추출하였고, 실험군은 치료 1시간 전 450 ml의 물을 마셔 방광을 채운 상태에서 방사선치료를 받은 환자들이었다. 모의치료시 설계용 CT와 초음파를 이용하여 방광의 부피를 측정하였고, 실험군에서는 방사선 치료 기간 동안 초음파로 매주 방광의 부피를 측정하였다. 결 과: 모의치료시 초음파로 측정한 방광의 부피와 CT로 측정한 방광의 부피는 유의한 상관성을 보여(r=0.679) 방광 부피를 측정하는 데 있어 초음파의 정확성을 확인하였다. 실험군에서 같은 양의 물을 마셔도 방광의 부피는 환자에 따라 차이가 컸고(범위 $22{\sim}352\;ml$), 방사선치료 기간 동안 방광의 부피는 일정하게 유지되지 않았다. 그러나 모의치료시 방광의 부피가 컸던 환자는 치료기간 중에도 방광의 부피가 큰 경향을 보였다. 실험군의 방광 부피는 평균 $299{\pm}155\;mL$이었고 대조군은 평균 $187{\pm}155\;ml$로, 일정량의 물을 마시면 방광 조절을 하지 않았을 때보다 방광 부피가 유의하게 증가하였고(p=0.009), 실험군에서 급성 비뇨기계 부작용이 대조군보다 감소하였지만 통계적으로 유의하지는 않았다 또한 방광의 부피가 클수록 부작용이 감소하는 경향을 보였고, 모의치료시 CT로 측정한 방광의 부피가 150 ml 이상이면 1등급과 2등급의 비뇨기계 부작용이 현저히 감소하였다(p=0.023). 치료 기간 중의 방광 부피에 따른 부작용 발생률은 통계적으로 유의한 변화를 보이지 않았으나 방광의 부피가 클수록 1등급 부작용이 감소하는 경향을 보였고, 100 ml 이상인 경우에는 모든 등급의 부작용이 감소하는 경향을 보였다. 결 론: 방광을 채우고 방사선치료를 할 때 치료 기간 중 방광의 부피가 일정하게 유지되지 않았음에도 불구하고 방광 조절을 하지 않았을 때보다 비뇨기계 급성 부작용이 감소하는 경향을 보였고, 모의치료시 방광 부피가 150 mL 이상인 경우 부작용은 현저히 감소하였다. 따라서 전립선암 환자에서 방사선치료를 할 때 방광을 채우는 것이 급성 비뇨기계 부작용을 줄이는 데 도움이 될 것으로 생각한다.

Keywords

References

  1. Zelefsky M, Moughan J, Owen J, et al. Changing trends in national practice for external beam radiotherapy for clinically localized prostate cancer: the 1999 Patterns of Care survey for prostate cancer. Int J Radiat Oncol Biol Phys 2004;59:1053-1061 https://doi.org/10.1016/j.ijrobp.2003.12.011
  2. Kuban DA, Thames HD, Levy LB, et al. Long-term multi-institutional analysis of stage T1-T2 prostate cancer treated with radiotherapy in the PSA era. Int J Radiat Oncol Biol Phys 2003;57:915-928 https://doi.org/10.1016/S0360-3016(03)00632-1
  3. Dearnaley DP, Khoo VS, Norman AR, et al. Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomised trial. Lancet 1999;353: 267-272 https://doi.org/10.1016/S0140-6736(98)05180-0
  4. Koper PC. Stromm JC, Putten WL, et al. Acute morbidity reduction using 3DCRT for prostate carcinoma: a randomized study. Int J Radiat Oncol Biol Phys 1999;43:727-734 https://doi.org/10.1016/S0360-3016(98)00406-4
  5. Koper PC, Jansen P, Putten W, et al. Gastro-intestinal and genito-urinary morbidity after 3D conformal radiotherapy of prostate cancer: observations of a randomized trial. Radiot oncol 2004;73:1-9 https://doi.org/10.1016/j.radonc.2004.07.020
  6. Michalski JM, Winter K, Purdy JA, et al. Preliminary evaluation of low-grade toxicity with conformal radiation therapy for prostate cancer on RTOG 9406 dose levels I and II. Int J Radiat Oncol Biol Phys 2003;56:192-198 https://doi.org/10.1016/S0360-3016(03)00072-5
  7. Zelefsky MJ, Cowen D, Fuks Z, et al. Long term tolerance of high dose three-dimensional conformal radiotherapy in patients with localized prostate carcinoma. Cancer 1999;85: 2460-2468 https://doi.org/10.1002/(SICI)1097-0142(19990601)85:11<2460::AID-CNCR23>3.0.CO;2-N
  8. Zelefsky MJ, Fuks Z, Happersett L, et al. Clinical experience with intensity modulated radiation therapy (IMRT) in prostate cancer. Radiother Oncol 2000;55:241-249 https://doi.org/10.1016/S0167-8140(99)00100-0
  9. Zelefsky MJ, Fuks Z, Hunt M, et al. High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients. Int J Radiat Oncol Biol Phys 2002;53:1111-1116 https://doi.org/10.1016/S0360-3016(02)02857-2
  10. Zelefsky MJ, Fuks Z, Hunt M, et al. High dose radiation delivered by intensity modulated conformal radiotherapy improves the outcome of localized prostate cancer. J Urol 2001;166: 876-881 https://doi.org/10.1016/S0022-5347(05)65855-7
  11. Zelefsky MJ, Fuks Z, Leibel SA. Intensity-modulated radiation therapy for prostate cancer. Semin Radiat Oncol 2002;3: 229-237
  12. Goldner G, Wachter-Gerstner N, Wachter S, et al. Acute side effects during 3-D-planned conformal radiotherapy of prostate cancer. Differences between patient's self-reported questionnaire and the corresponding doctor's report. Strahlenther Onkol 2003;179:320-327 https://doi.org/10.1007/s00066-003-1029-9
  13. Schultheiss TE, Lee WR, Hunt MA, et al. Late GI and GU complications in the treatment of prostate cancer. Int J Radiat Oncol Biol Phys 1997;37:3-11 https://doi.org/10.1016/S0360-3016(96)00468-3
  14. Pinkawa M, Asadpour B, Gagel B, et al. Prostate position variability and dose-volume histograms in radiotherapy for prostate cancer with full and empty bladder. Int J Radiat Oncol Biol Phys 2006;53:856-861
  15. Pinkawa M, Fischedick K, Branka A, et al. Low-grade toxicity after conformal radiation therapy for prostate cancerimpact of bladder volume. Int J Radiat Oncol Biol Phys 2006; 64:835-841 https://doi.org/10.1016/j.ijrobp.2005.09.003
  16. Kim TH, Chie EK, Kim DY, et al. Comparison of the belly board device method and the distended bladder method for reducing irradiated small bowel volumes in preoperative radiotherapy of rectal cancer patients. Int J Radiat Oncol Biol Phys 2005;62:769-775 https://doi.org/10.1016/j.ijrobp.2004.11.015
  17. Pinkawa M, Siluschek J, Gagel B, et al. Postoperative radiotherapy for prostate cancer. Strahlenther Onkol 2007;183: 23-29 https://doi.org/10.1007/s00066-007-1588-2
  18. Higgins PD, Weaver R, Dusenbery, KE. Evaluation of bladder dose in intensity-modulated radiation therapy of the prostate. Medi Dosim 2006;31:197-200 https://doi.org/10.1016/j.meddos.2005.12.016
  19. Kupelian PA. Langen KM, Zeidan OA, et al. Daily variations in delivered doses in patients treated with radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 2006;66: 876-882 https://doi.org/10.1016/j.ijrobp.2006.06.011
  20. Han Y, Shin EH, Huh SJ, et al. Interfractional dose variation during intensity-modulated radiation therapy for cervical cancer assessed by weekly ct evaluation. Int J Radiat Oncol Biol Phys 2006;65:617-623 https://doi.org/10.1016/j.ijrobp.2006.02.005
  21. Roeske JC, Forman JD, Mesina CF, et al. Evaluation of changes in the size and location of the prostate, seminal vesicles, bladder, and rectum during a course of external beam radiation therapy. Int J Radiat Oncol Biol Phys 1995;33:1321-1329 https://doi.org/10.1016/0360-3016(95)00225-1
  22. The National Cancer Institute Common Terminology Criteria for Adverse Events v3.0 (NCI CTCAE v3.0). Available from: http://ctep.cancer.gov/reporting/ctc.html. Accessed June 10, 2007
  23. Schnider P, Birner P, Gendo A, Ratheiser K, Auff E. Bladder volume determination: portable 3-D versus stationary 2-d ultrasound device. Arch Phys Med Rehabil 2000;81:18-21 https://doi.org/10.1016/S0003-9993(00)90215-6
  24. Byun S, Kim HH, Lee E, Paick J, Kamg W, Oh S. Accuracy of bladder volume determinations by ultrasonography: are they accurate over entire bladder volume range? Urology 2003; 62:656-660 https://doi.org/10.1016/S0090-4295(03)00559-4
  25. Pinkawa M, Asadpour B, Siluschek J, et al. Bladder extension variability during pelvic external beam radiotherapy with a full or empty bladder. Radiot Oncol 2007;83:163-167 https://doi.org/10.1016/j.radonc.2007.03.015
  26. Lebesque JV, Bruce AM, Kroes G, et al. Variation in volumes, dose-volume histograms, and estimated normal tissue complication probabilities of rectum and bladder during conformal radiotherapy of T3 prostate cancer. Int J Radiat Oncol Biol Phys 1995;33:1109-1119 https://doi.org/10.1016/0360-3016(95)00253-7
  27. Stam MR, vanLin EN, Vight LP, et al. Bladder filling variation during radiation treatment of prostate cancer: can the use of a bladder ultrasound scanner and biofeedback optimize bladder filling? Int J Radiat Oncol Biol Phys 2006;65:371-377 https://doi.org/10.1016/j.ijrobp.2005.12.039
  28. O'Doherty UM, McNair HA, Norman AR, et al. Variability of bladder filling in patients receiving radical radiotherapy to the prostate. Radiot Oncol 2006;79:335-340 https://doi.org/10.1016/j.radonc.2006.05.007
  29. Fiorino C, Foppiano F, Franzone P, et al. Rectal and bladder motion during conformal radiotherapy after radical prostatectomy. Radiot Oncol 2005;74:187-195 https://doi.org/10.1016/j.radonc.2004.10.002
  30. Bayley AJ, Catton CN, Haycocks T, et al. A randomized trial of supine vs. prone positioning in patients undergoing escalated dose conformal radiotherapy for prostate cancer. Radiother Oncol 2004;70:37-44 https://doi.org/10.1016/j.radonc.2003.08.007
  31. Antolak JA, Rosen II, Childress CH, Zagars GK, Pollack A. Prostate target volume variations during a course of radiotherapy. Int J Radiat Oncol Biol Phys 1998;42:661-672 https://doi.org/10.1016/S0360-3016(98)00248-X
  32. Rowe JW, Shock NW, DeFronzo RA, et al. The influence of age on the renal response to water deprivation in man. Nephron 1976;17:270-278 https://doi.org/10.1159/000180731
  33. Kirkland, JL, Lye M, Levy DW, Banerjee, AK. Patterns of urine flow and electrolyte excretion in healthy elderly people. Br Med J 1983;287:1665-1667 https://doi.org/10.1136/bmj.287.6406.1665
  34. Sugimoto E. Analysis of salt and water intake by continuous determination of blood volume and plasma sodium concentration. Jpn J Physiol 1988;38:519-529 https://doi.org/10.2170/jjphysiol.38.519
  35. Maughan RJ, Watson P, Evans GH, Broad N, Shirreffs SM. Water balance and salt losses in competitive football. Int J Sport Nutr Exerc Metab 2007;17:583-594 https://doi.org/10.1123/ijsnem.17.6.583
  36. Yeung CK, Sit FK, To LK, et al. Reduction in nocturnal functional bladder capacity is a common factor in the pathogenesis of refractory nocturnal enuresis. BJU Int 2002;90:302-307 https://doi.org/10.1046/j.1464-410X.2002.02884.x
  37. Rushton HG, Belman AB, Zaontz MR, Skoog SJ, Sihelnik S. The influence of small functional bladder capacity and other predictors on the response to desmopressin in the management of monosymptomatic nocturnal enuresis. J Urol 1996;156:651-655 https://doi.org/10.1016/S0022-5347(01)65775-6
  38. Eller DA, Austin PF, Tanguay S, Homsy YL. Daytime functional bladder capacity as a predictor of response to desmopressin in monosymptomatic nocturnal enuresis. Eur Urol 1998;3:25-29
  39. Zietman AL, DeSilvio ML, Slater JD, et al. Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial. JAMA 2005;294:1233-1239 https://doi.org/10.1001/jama.294.10.1233
  40. Pollack A, Zagars GK, Starkschall G, et al. Prostate cancer radiation dose response: results of the M.D. Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys 2002; 53:1097-1105 https://doi.org/10.1016/S0360-3016(02)02829-8
  41. Peeters ST, Heemsbergen WD, Koper PC, et al. Doseresponse in radiotherapy for localized prostate cancer: results of the dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J Clin Oncol 2006;24:1990-1996 https://doi.org/10.1200/JCO.2005.05.2530
  42. Park SW, Oh DH, Bae HS, Cho BC, Park JH, Han SH. Application of Intensity Modulated Radiation Therapy (IMRT) in Prostate Cancer. J Koreans Soc Ther Radiol Oncol 2002;20: 68-72