• Title/Summary/Keyword: Filler effect

Search Result 508, Processing Time 0.033 seconds

RHEOLOGICAL PROPERTIES OF RESIN COMPOSITES ACCORDING TO THE CHANGE OF MONOMER AND FILLER COMPOSITIONS (단량체 및 무기질 filler 조성 변화에 따른 복합레진의 유변학적 특성)

  • Lee In-Bog;Lee Jong-Hyuck;Cho Byung-Hoon;Son Ho-Hyun;Lee Sang-Tag;Um Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.6
    • /
    • pp.520-531
    • /
    • 2004
  • The aim of this study was to investigate the effect of monomer and filler compositions on the rheological properties related to the handling characteristics of resin composites. Methods. Resin matrices that Bis-GMA as base monomer was blended with TEGDMA as diluent at various ratio were mixed with the Barium glass (0.7 um and 1.0 um), 0.04 um fumed silica and 0.5 um round silica. All used fillers were silane treated. In order to vary the viscosity of experimental composites, the type and content of incorporated fillers were changed, Using a rheometer, a steady shear test and a dynamic oscillatory shear test were used to evaluate the viscosity ($\eta$) of resin matrix, and the storage shear modulus (G'), the loss shear modulus (G"), the loss tangent ($tan{\delta}$) and the complex viscosity (${\eta}^*$) ofthe composites as a function of frequency ${\omega}{\;}={\;}0.1-100{\;}rad/s$. To investigate the effect of temperature on the viscosity of composites, a temperature sweep test was also undertaken. Results. Resin matrices were Newtonian fluid regardless of diluent concentration and all experimental composites exhibited pseudoplastic behavior with increasing shear rate. The viscosity of composites was exponentially increased with increasing filler volume%. In the same filler volume, the smaller the fillers were used, the higher the viscosities were. The effect of filler size on the viscosity was increased with increasing filler content. Increasing filler content reduced $tan{\delta}$ by increasing the G' further than the G". The viscosity of composites was decreased exponentially with increasing temperature.

Mechanical Properties of NBR Rubber Composites Filled with Reinforced Fiber and Ceramics (강화섬유와 세라믹이 충진된 NBR 고무 복합체의 기계적 물성 특성)

  • Kwon, Byeong-Jin;Kim, Young-Min;Lee, Danbi;Park, Soo-Yong;Jung, Jinwoong;Chung, Ildoo
    • Journal of Adhesion and Interface
    • /
    • v.22 no.4
    • /
    • pp.118-127
    • /
    • 2021
  • In this study, the mechanical properties of vulcanized rubber were evaluated through compounding by controlling filler content to improve the mechanical properties of NBR rubber. Aramid and glass fibers with excellent heat resistance were used as fillers, and ceramics were additionally used in anticipation of a complementary effect, and as for the ceramic materials, needle-shaped and plate-shaped ceramics were used. Each filler was used in an amount of 5.0, 10.0, 15.0, and 20.0 phr in order to investigate the basic properties according to the amount of filler. To confirm the complementary effect through ceramic application, each 10.0 phr fiber and ceramic were mixed with 1:1 ratio to evaluate mechanical properties. As a result, it was confirmed that the decreasing ratio of tensile strength after heat aging was small in the order of aramid fiber, acicular ceramic, glass fiber, and plate ceramic in the case of applying the filler alone. In addition, the mechanical characteristics of vulcanized rubber using composite filler based on fibers and ceramics were evaluated, and it was confirmed that the composite filler had a complementary effect on thermal aging.

Fatigue behavior of mechanical structures welded with different filler metal

  • Alioua, Abdelkader;Bouchouicha, Benattou;Zemri, Mokhtar;IMAD, Abdellatif
    • Advances in materials Research
    • /
    • v.6 no.3
    • /
    • pp.233-243
    • /
    • 2017
  • This paper describes an investigation on the effect of using three different filler metals on fatigue behavior of mechanical structures welded. The welding is carried out on the steel A510AP used for the manufacture of gas cisterns and pipes. The welding process used is manual welding with coated electrodes and automatic arc welding. Compact tension CT50 specimen has been used. The three zones of welded joint; filler metal FM, heat affected zone HAZ and base metal BM have been investigated. The results show that the crack growth rate CGR is decreasing respectively in BM, FM and HAZ; however, this variation decreases when stress intensity factor SIF increases. For low values of SIF, the CGR is inferior in the over-matched filler metal of which the value of mismatch M is near unity, but for high values of M the CGR is superior, and the effect of the over-matching on CGR becomes negative. No deviation of the crack growth path has been noticed.

The Bonding Strength Characteristic of the Filler Metal Powder on the TLP Bonded Region of Superalloy GTD-111DS (일방향 초내열합금 GTD-111DS에서 삽입금속 분말에 따른 천이액상확산접합부의 접합강도 특성)

  • Oh, In-Seok;Kim, Gil-Moo;Moon, Byeong-Shik
    • Journal of Welding and Joining
    • /
    • v.25 no.5
    • /
    • pp.45-50
    • /
    • 2007
  • The Ni-base superalloy GTD111 DS is used in the first stage blade of high power land-based gas turbines. Advanced repair technologies of the blade have been introduced to the gas turbine industry over recent years. The effect of the filler metal powder on Transient Liquid Phase bonding phenomenon and tensile mechanical properties was investigated on the GTD111 DS superalloy. At the filler metal powder N series, the base metal powders fully melted at the initial time and a large amount of the base metal near the bonded interlayer was dissolved by liquid inter metal. Liquid filler metal powder was eliminated by isothermal solidification which was controlled by the diffusion of B into the base metal. The solids in the bonded interlayer grew from the base metal near the bonded interlayer inward the insert metal during the isothermal solidification. The bond strength of N series filler metal powder was over 1000 MPa. and ${\gamma}'$ phase size of N series TLP bonded region was similar with base metal by influence of Ti, Al elements. At the insert metal powder M series, the Si element fluidity of the filler metal was good but microstructure irregularity on bonded region because of excessive Si element. Nuclear of solids formed not only from the base metal near the bonded interlayer but also from the remained filler metal powder in the bonded interlayer. When the isothermal solidification was finished, the content of the elements in the boned interlayer was approximately equal to that of the base metal. But boride and silicide formed in the base metal near the bonded interlayer. And these boride decreased with the increasing of holding time. The bond strength of M series filler metal powder was about 400 MPa.

A Study on Improvement of DC Breakdown Strength due to Interface Treatment Effect of Epoxy/$SiO_2$ Compund Material for Electrical installation (전기설비용 Epoxy/$SiO_2$ 복합재료의 계면처리 효과에 따른 직류 절연파괴 강도의 개선에 관한 연구)

  • 김재환;박창옥;김경환;김명호
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.2
    • /
    • pp.51-55
    • /
    • 1992
  • In this study as treating to filter silance coupling agent (KM-6030 improving coupling strength between matrix resin (bisphenole-A type epoxy resin) and filler (SiO2), breakdown strength was investigated on cases applying DC voltage to specimen. In the case on DC voltage, breakdown strength was improved bout 12.73% and 10.77% in specimen of 5[wt%] and 50[wt%] of filler content of 10 of epoxy. Therefore, it was investigate the effect that concentration of coupling agent and content of filler was influential on breakdown strength of epoxy resin.

  • PDF

Cure Characteristics, Mechanical Properties and Abrasion Resistance of Silica Filled Natural Rubber Vulcanizate

  • Lee, Hae Gil;Park, Chan Young
    • Elastomers and Composites
    • /
    • v.50 no.3
    • /
    • pp.159-166
    • /
    • 2015
  • Silica which is used for reinforcing filler in tire industry is widely known as eco-friendly material exerting $CO_2$ reduction effect through decrease of rolling resistance and improvement of wet grip. Generally silica is classified as a highly polar filler because it contains a large number of silanol (Si-OH) group on its surface. And also silica gives a lower reinforcing effect than carbon black due to its poorer rubber-filler interaction. Therefore silica is treated with silane coupling agent or activator, then following the conventional rubber blend method, vulcanized sheets were prepared using a hot press, and cure characteristics, mechanical properties and abrasion resistance of the test specimens were investigated. It was found that with an increase in the silane coupling agent content the tensile strength, 300% modulus and abrasion resistance increased while Mooney viscosity decreased and crosslink density slightly increased with an increase of activator.

THE EFFECT OF FILLERS ON THE DEINKING OF PHOTOCOPIED PAPER

  • Chen, Qing-min;Chang, Hou-min;Ethan K. Andrews;Heinz G. Olf
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.159-163
    • /
    • 1999
  • Model experiments were conducted to investigate the effect of different fillers on the removal of toner ink. Combinations of different papers (commercial photocopy paper and filler-free paper), fillers (calcium carbonate, kaolin clay, and talc), and chemicals(1-octadecanol, stearic acid, oleic acid, and TOFA) and stearic acid were found to be effective in detachment and agglomeration of toner ink. Furthermore, pH had little effect on toner detachment and agglomeration, indicating both protonated fatty acids and their anions are equally effective. In the presence of either kaolin clay or talc, all these agglomerating agents are equally effective, although a slightly higher dosage(1% for clay and 2% for talc as compared with control) is required, presumably due to the adsorption of chemical by the filler. Calcium carbonate filler, on the other hand, has a significant and adverse effect on the fatty acids used but has little effect on 1-octadecanol with the exception of possible adsorption. While stearic acid is not effective, a much higher level of oleic acid or TOFA is needed when calcium carbonate fillers are present as compared to the filler-free case. Fatty acids react with calcium carbonate to form calcium salts. The availability of fatty acid anion for toner detachment and agglomeration is determined by the solubility of calcium salt of a given fatty acid. Calcium oleate is 10 times more soluble in water than calcium stearate.

Mechanical Properties of Corn Husk Flour/PP Bio-composites

  • Jagadeesh, Dani.;Sudhakara, P.;Lee, D.W.;Kim, H.S.;Kim, B.S.;Song, J.I.
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.213-217
    • /
    • 2013
  • The focus in the present work is to study the agro-waste corn husk bio-filler as reinforcement for polypropylene. These materials have been created by extrusion and injection molding. The effect of filler content by 10, 20, 30 and 40 wt. % and mesh sizes of 50~100, 100 and 300 on the mechanical properties was studied. For the un-notched specimens, the results of flexural strength showed a declining trend with increase the filler loading and the results of impact strength showed an increasing trend with increase the mesh size. In contrast, enhanced flexural modulus was observed with increasing filler loading and size.