• Title/Summary/Keyword: Filament fiber

Search Result 227, Processing Time 0.028 seconds

A study on the variation of in-plane and out-of-plane properties of T800 carbon/epoxy composites according to the forming pressure (성형 압력에 따른 T800 탄소섬유/에폭시 복합재료의 평면 내.외 물성 변화에 대한 연구)

  • Park, Myong-Gil;Cho, Sung-Kyum;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.61-66
    • /
    • 2010
  • In this paper, the variation of mechanical properties of T800 carbon/epoxy composites according to the forming pressure, which was referred to previous studies on a filament winding process, were investigated. The specimens of all the tests were fabricated by an autoclave de-gassing molding process controlling forming pressure (absolute pressures of 0.1MPa, 0.3MPa, 0.7MPa including vacuum) and water jet cutting after fabricating composite laminates. Various tensile tests were performed for in-plane properties and interlaminar properties were also measured by using Iosipescu test jig. Fiber volume fraction was measured to correlate the property variation and the forming pressure. This properties are expected to be utilized in the design of Type III pressure vessel for hydrogen vehicles which uses the same carbon fiber (T800 carbon fiber) for the filament winding process.

Structural Design and Analysis for Small Wind Turbine Blade (초소형 풍력발전용 블레이드에 대한 구조설계 몇 해석)

  • Lee, Seung-Pyo;Kang, Ki-Weon;Chang, Se-Myong;Lee, Jang-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.288-294
    • /
    • 2010
  • In recent years, wind energy has been the world's fastest growing source of energy. This paper describes the structural design and analysis of composite blade for 2 kW-level HAWT (horizontal axis wind turbine). The aerodynamic design and force, which are required to design and analyze a composite blade structurally, are calculated through BEMT(blade element momentum theory) implemented in public code PROPID. To obtain the equivalent material properties of filament wound composite blades, the rule-of-mixture is applied using the basic material properties of fiber and matrix, respectively. Lay-up sequence, ply thickness and ply angle are designed to satisfy the loading conditions. Structural analysis by using commercial software ABAQUS is performed to compute the displacement and strength ratio of filament wound composite blades.

Physical Properties of Ultra-fine Denier Filament Yarn Fabric

  • Kim, Jong-Jun;Son, Yang-Kug
    • Journal of Fashion Business
    • /
    • v.10 no.3
    • /
    • pp.23-30
    • /
    • 2006
  • Various high-touch textile products have been developed recently including ultra-fine denier filament yarn fabrics. The touch or hand of high value-added products is of prime importance. Physical and mechanical properties of fabric specimens, ultra-fine denier filament yarn fabric specimen, 100% wool fabric and wool/polyester 50:50 fabric,were measured using the KES. Compressibility of the ultra-fine denier fabric is recommendable, possibly due to the good bulk property of the specimen. Overall, the THV of the ultra-fine denier fabric is positioned between those of the 100% wool fabric and wool/polyester 50:50 fabric. Observed differences in the physical and mechanical properties explain the fabric specimen characteristics reasonably.

Solvent Effect on Stress Relaxation of PET Filament Fibers and Self Diffusion of Crystallites

  • Nam Jeong Kim;Eung Ryul Kim;Sang Joon Hahn
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.5
    • /
    • pp.468-473
    • /
    • 1991
  • Viscoelastic properties of PET filament fibers on stress relaxation were investigated in the solvents of $H_2$O, 0.05% NaOH and 50% DMF using an Instron (UTM4-100 Tensilon) with solvent chamber. The theoretical stress relaxation equation derived by applying the Ree-Eyring's hyperbolic sine law to dashpot of three element non-Newtonian model was applied to the experimental stress relaxation curves, and the model parameters $G_1,G_2$, ${\alpha}$ and ${\beta}$ were obtained. By analyzing temperature dependency of the relaxation time, the values of activation entropy, activation enthalpy and activation free energy for flow in PET filament fiber were evaluated, the activation free energy being about 25.7 kcal/mol. The self diffusion coefficient and hole distance were obtained from parameters ${\alpha}$, ${\beta}$ and crystallite size in order to study the self diffusion and the orientation of crystallites in amorphous region and the effect of solvent.

A Study on the Development of a Hybrid Fiber Reinforced Composite for a Type 4 CNG Vessel (CNG용 Type 4 하이브리드 섬유 복합재 용기 개발에 대한 연구)

  • Cho, Sung-min;Cho, Min-sik;Jung, Geunsung;Lee, Sun-kyu;Lee, Seung-kuk;Park, Ki-dong;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.97-103
    • /
    • 2017
  • The objective of this study is to develop and commercialize an on-board fuel storage system for CNG vehicles. A type 4 vessel is made of resin-impregnated continuous filament windings on a polyamide (PA6) liner. In particular, this study localized the PA6 liner's fabrication and development. To analyze the filament winding, a specimen test was performed, and the results were verified values obtained using finite element analysis. In this study, the filament winding and fibers were optimized for a 207 bar composite cylinder in a compressed natural gas vehicle.

Bending Strength of FRP According to the Winding Orientation of Glass Fiber (와인딩 각도에 따른 FRP의 굽힘강도)

  • Park, Hoy-Yul;Kang, Dong-Pil;Han, Dong-Hee;Kim, In-Sung;Pyo, Hyun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.242-245
    • /
    • 2000
  • The fiber contributes the high strength and modulus to the composite. The fiber orientation in FRP has a great effect on the strength of FRP because the strength of FRP mainly depends on the strength of fiber. In this study, FRP was made unidirectionally by pultrusion method and outer part of FRP was made by filament winding method to give fiber orientation to the FRP. The bending strength and bending stresses of FRP rods were simulated according to the winding orientation of glass fiber. The bending strength of FRP was also evaluated. The results of simulation and evaluation Were compared each other to investigate main stresses which affect the fracture of FRP. The main stresses which had a great effect on the strength of FRP were shear stresses.

  • PDF

Compression Strength Test of FRP Reinforced Concrete Composite Pile (FRP-콘크리트 합성말뚝 시편의 압축강도실험)

  • Lee, Young-Geun;Choi, Jin-Woo;Park, Joon-Seok;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.19-27
    • /
    • 2011
  • In this paper, we present a part of results to develop new type hybrid FRP-concrete composite pile (i.e., concrete filled fiber reinforced plastic circular tubes, hybrid CFFT, HCFFT). The purpose of this paper is to evaluate compressive loading capacity through compressive strength test. Before compressive strength test of HCFFT, we investigated mechanical properties of pultruded fiber reinforced plastic (PFRP) and filament winding fiber reinforced plastic (FFRP). For estimating the compressive strength of HCFFT, uni-axial compression strength tests of HCFFT compression members were conducted. The test variables are compressive strengths of concrete and thickness of FFRP. In addition, uni-axial compression strength tests of concrete filled fiber reinforced plastic circular tube (CFFT) except PFRP members were conducted. The test variable in the test is thickness of FFRP. From the test result, the compressive strength of the HCFFT in larger than compressive strength of CFFT as much as 47%. It can be observed that the uni-axial compressive strength of the HCFFT increased if the concrete strength and the thickness of exterior filament winding FRP tube increased. In addition, the finite element analysis result is compared with the experimental result. The difference between the experimental and FEM results is in the range of 0.14% to 17.95%.

Compressive Strength of FRP in Variation with Fiber Orientation (섬유의 배향에 따른 FRP의 압축강도)

  • Park, Hoy-Yul;Ahn, Myeong-Sang;Na, Moon-Kyong
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1349-1350
    • /
    • 2006
  • FRP has been used much for core materials of insulator. FRP consists of fiber and plastics(resin and binder). The fiber contributes strength to FRP. The fiber orientation in FRP has a great effect on the strength of FRP because the strength of FRP mainly depends on the strength of fiber. The direction of applied stress of FRP is different from the kinds of insulators. In this study, inner part of FRP rod was made unidirectionally by pultrusion method and outer part of FRP rod was made by filament winding method. Compressive strength and stress of FRP rods were simulated according to the winding orientation of glass fiber. Simulated value and real evaluated compressive strength were compared each other.

  • PDF

The Effect of PET Filament Yarn and Properties and False Twist Processing Conditions on the Physical Properties of DTY (PET 원사와 가연공정 특성이 DTY의 물성에 미치는 영향)

  • 박경순;김승진;정기진;강지만
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.122-125
    • /
    • 2003
  • Easy-care성을 장점으로 하여 천연섬유 대체용으로 점차 차별화가 진행되며 개발된 PET 섬유는 범용적인 섬유특성으로 인해 의류ㆍ비의류용 분야에서 광범위한 소재로 많이 사용되고 있다. 고부가가치의 직물을 생산하기 위해서는 원사의 특성뿐만 아니라 원사 이후의 공정 특히 사가공공정에서의 각공정에 따른 絲의 물성을 파악하는 것이 중요하다. 원사를 가연하는 공정 중 최근 disk spindle과 큰축을 이루고 있는 belt 가연기구는 높은 생산속도와 균일한 가공사를 생산할 수 있어 많이 사용하고 있다. (중략)

  • PDF

Preparation of Woven Fabric Via Electrospun Poly($\varepsilon$-caprolactone) Filament (전기방사로 제조된 Poly($\varepsilon$-caprolactone) 필라멘트를 이용한 직물의 제조)

  • 박희천;길명섭;김형준;김학용;이덕래
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.374-375
    • /
    • 2003
  • 최근 나노섬유기술의 중요성이 증가함에 따라 나노섬유를 제조할 수 있는 여러 방법들 중에 상용화의 가능성, 적용 고분자의 다양성, 제조 공정의 단순성, 다양한 제품기술 응용성을 고려할 때 전기방사는 가장 기대되는 방법으로 현재, 다양한 분야의 연구들이 활발히 진행되고 있다[1,3]. 본 연구는 전기 방사 방법을 이용하여 다공성의 Poly($\varepsilon$-caprolactone) 필라멘트를 제조하고, 제조한 필라멘트를 수직기를 이용하여 평직 직물을 제조하여 그 응용 가능성을 확인하는 것이다[2]. (중략)

  • PDF