• Title/Summary/Keyword: Field pullout test

Search Result 45, Processing Time 0.025 seconds

Estimation of Ultimate Pullout Resistance of Soil-Nailing Using Nonlinear (비선형회귀분석을 이용한 가압식 쏘일네일링의 극한인발저항력 판정)

  • Park, Hyun-Gue;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.2
    • /
    • pp.65-75
    • /
    • 2016
  • In this study, we constructed a database by collecting field pullout test data of the soil nailing using pressurized grouting, and suggested a method to estimate the ultimate pullout resistance using nonlinear regression analysis to overcome the problems of ultimate pullout resistance estimation using graphical methods. The load-displacement curve estimated by nonlinear regression showed a very high correlation with the field pullout test data. Estimated ultimate pullout load by nonlinear regression method was average 29% higher than estimated ultimate pullout load using previous graphical method. A sigmoidal growth model was found to be the best-fitting nonlinear regression model against rapid pullout failure. Further, an asymptotic regression model was found to be the best fit against progressive nail pullout. The unit ultimate skin friction suggested in this research reflected in the domestic geotechnical characteristics and the specifications of the pressurized grouting method. This research is expected to contribute towards establishing an independent design standard for the soil nailing by providing solutions to the problems that occur when using design charts based on foreign research.

Pullout Resistance Characteristics of the Wedge-shaped Soil Nail (쐐기형 쏘일 네일의 인발 거동 특성)

  • Kim, Bum-Joo;Lee, Yong-Jun;Yoon, Yong-Soo;Chung, Min-Kyu;Yoon, Ji-Nam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1079-1083
    • /
    • 2009
  • In this study, the pullout resistance characteristic of a wedge-shaped soil nail, made by attaching small steel sticks to the tip of a nail in a wedge shape, was investigated. It was developed to improve the overall pullout resistance capacity of the existing soil nail system, composed of nail and grout, by making the wedge provide additional pullout resistance. In order to evaluate the pullout resistance of the wedge shape-soil nail, field pullout tests were conducted, and the results were compared with those for the existing soil nail without the wedge. The field test results showed that the pullout resistance capacity of the wedge-shaped soil nail was 50% larger than that of the existing soil nail without the wedge.

  • PDF

Anchorage mechanism and pullout resistance of rock bolt in water-bearing rocks

  • Kim, Ho-Jong;Kim, Kang-Hyun;Kim, Hong-Moon;Shin, Jong-Ho
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.841-849
    • /
    • 2018
  • The purpose of a rock bolt is to improve the mechanical performance of a jointed-rock mass. The performance of a rock bolt is generally evaluated by conducting a field pullout test, as the analytical or numerical evaluation of the rock bolt behavior still remains difficult. In this study, wide range of field test was performed to investigate the pullout resistance of rock bolts considering influencing factors such as the rock type, water bearing conditions, rock bolt type and length. The test results showed that the fully grouted rock bolt (FGR) in water-bearing rocks can be inadequate to provide the required pullout resistance, meanwhile the inflated steel tube rock bolt (ISR) satisfied required pullout resistance, even immediately after installation in water-bearing conditions. The ISR was particularly effective when the water inflow into a drill hole is greater than 1.0 l/min. The effect of the rock bolt failure on the tunnel stability was investigated through numerical analysis. The results show that the contribution of the rock bolt to the overall stability of the tunnel was not significant. However, it is found that the rock bolt can effectively reinforce the jointed-rock mass and reduce the possibility of local collapses of rocks, thus the importance of the rock bolt should not be overlooked, regardless of the overall stability.

The Study on Pullout Resistance Characteristics of the Compression Anchor by Pullout Tests on the Field (현장실험에 의한 압축형 앵커의 인발거동특성 연구)

  • 홍석우
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.44-52
    • /
    • 2002
  • The mechanism of pullout resistance of compression anchor is analysed. This anchor is developed through the field pullout tests and the laboratory element test. The compression anchor is characterized by decrease of progressive failure, simple site work, economy and durability compared with tension anchor. The characteristics of compression anchor, compared with tension anchor. mainly are summarized as follows ; (1) The plastic displacement of anchor body is very small during pullout of anchor. (2) Total anchor length decreases by the shortening of free length; (3) The progressive failure is decreased.; (4) The safety factor for pullout resistance increases with time after construction of anchor.

Design Method and Evaluation of the Applicability of the Complex AAM Permanent Anchor (복합 AAM 영구 앵커의 설계법 및 적용성 평가)

  • Lee, Hyuk-Jin;Jung, Dae-Hoon;Kim, Jin-Hong;Lee, Chong-Ha;Kim, Hong-Taek
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.538-541
    • /
    • 2007
  • In this study, the complex AAM permanent anchor was introduced and the design method for the complex AAM permanent anchor was showed by examining the relationship of the forces applied to the anchor, the ground failure, the loads inducing the tensile failure between the anchors, etc. In order to understand the behavioral characteristics of the complex AAM permanent anchor, the field pullout test was carried out, and the results obtained with the design method were compared with those of the field pullout test.

  • PDF

Pullout Capacity of Screw Anchor Piles Using Field Pull-out Tests (현장인발시험을 통한 Screw Anchor Pile의 인발저항특성)

  • Yoo, Chung-Sik;Kim, Dae-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.5-16
    • /
    • 2014
  • This paper presents the results of an investigation into the pullout characteristics of screw anchor pile using field pullout tests. A series of field pullout tests were performed on screw anchor piles with different geometric characteristics such as shaft and screw diameters. The results indicated that screw anchor piles exhibited significantly higher pullout capacities compared with the same diameter piles without screw. Also observed is that the set-up effect and the grouting significantly increase pullout capacities, although the magnitude of the increase depends on the ground condition. In addition the applicability of prediction methods for helical pile pullout capacity to screw anchor piles was also examined. The results are presented in such a way that the pullout characteristics of screw anchor piles with different installation conditions can be identified. Practical implications of the findings are discussed.

Pullout Resistance Increase in Soil-Nailing with Pressurized Grouting: Verification of Theoretical Solution (압력식 쏘일네일링의 인발저항력 증가: 이론적 검증)

  • Seo, Hyung-Joon;Park, Sung-Won;Jeong, Kyeong-Han;Choi, Hang-Seok;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.419-433
    • /
    • 2009
  • Pressure grouting is a common technique in geotechnical engineering to increase the stiffness and strength of the ground mass and to fill boreholes or void space in a tunnel lining and so on. Recently, the pressure grouting has been applied to a soil-nailing system which is widely used to improve slope stability. The soil-nailing design has been empirically performed in most geotechnical applications because the interaction between pressurized grouting paste and the adjacent ground mass is complicated and difficult to analyze. The purpose of this study is to analyze the increase of pullout resistance induced by pressurized grouting with the aid of performing laboratory model tests and field tests. In this paper, two main causes of pullout resistance increases induced by pressurized grouting were verified: the increase of residual stress; and the increase of coefficient of pullout friction. From the laboratory tests, it was found that residual stress in borehole increases by pressurized grouting and dilatancy angle could be estimated by cavity expansion theory using the measured wall displacements. From the field test results, the pullout resistance of soil-nailing with pressurized grouting was found to be 10% larger than that of soil-nailing with gravitational grouting, mainly caused by mean normal stress increase and dilatancy effect. So, the pullout resistance could be estimated by considering these two effects. The radial displacement increases with dilatancy angle increase and the dilatancy angle decreases with injection pressure increase. The measured pullout resistance obtained from field tests is in good agreement with the estimated one from the cavity expansion theory.

  • PDF

Characteristics Study by Pullout Test of Compression(JR-2000) Anchor (선단압축형(JR-2000) 앵커의 인발시험에 관한 특성연구)

  • Oh, Myung-Ju;Park, Tae-Young;Ha, Wook-Jai;Kim, Moon-Gyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.819-824
    • /
    • 2005
  • Anchor system is widely used in construction works to support retaining structures. The compression anchor is characterized by excellent mechanism of pullout resistance, as well as less probability of progressive failure than a tension anchor. This paper presents the mechanical characteristics of a newly developed compression anchor(JR-2000). Field tests were performed to investigate characteristics of the pullout resistance of compression anchor.

  • PDF

Pullout Characteristics of End Fixed Nails (양단정착형 쏘일네일링의 인발특성)

  • Lee, Bongjik;Kim, Josoon;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.4
    • /
    • pp.5-11
    • /
    • 2007
  • In this study, several pullout tests were carried out under various field conditions to evaluate the pullout force of the end fixed nails. Pullout resistance force, displacement and friction force between the grouting and nail were measured in end fixed nails installed in soft rock, weathered rock and weathered soil. Furthermore, the field test were also carried out under the same condition using the conventional type nails. Based on the test results, it is concluded that the end fixed nails showed larger ultimate resistance force compared with conventional types nails, approximately two times in weathered soil and 1.6 times of weathered rock, respectively. The skin friction is also increased in end fixed type about 1.8~3.0 times. Finally, it is concluded in the base of the force transfer properties that using the end fixed nails could decrease the displacement and show a uniform resistance in entire length of nails.

  • PDF

A Study on the Behaviour Mechanism of Jacket Anchor (자켓앵커 거동특성에 관한 연구)

  • Kim, Dong-Hee;Kim, In-Chul;Kong, Hyun-Seok;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1240-1249
    • /
    • 2008
  • Jacket anchor was developed to increase the pullout resistance of general ground anchor in soft ground, and the mechanism of pullout resistance of jacket anchor was analyzed. Also, the ultimate bond stress of jacket anchor was estimated by ultimate resistance which is determined by field tests. Grout milk was injected into the jacket to make grout bulb of jacket anchor. The formation of grout bulb of jacket anchor increases the diameter of grout bulb, ground strength and confining pressure between anchor grout and soil. From the twelve field test results, it was observed that the pullout resistance of jacket anchor is 15.38~295.02%(average 83.53%) greater than that of general ground anchor, and plastic deformation of jacket anchor is 20.78~1,496.45%(average 288.78%) smaller than that of general ground anchor at the same load cycle. Especially, it was investigated that the increase of ultimate resistance over 200% and the reduction of plastic deformation over 600% was obtained in gravel layer. It means that the jacket anchor is superior to the general ground anchor in gravel layer. Finally, the ultimate bond stress was proposed to design jacket anchor.

  • PDF