• Title/Summary/Keyword: Field emission current

Search Result 458, Processing Time 0.029 seconds

Effect of Current-Aging on Field Emission from Carbon Nanotube Field Emitter Arrays

  • Kim, Ki-Seo;Ryu, Je-Hwang;Lee, Chang-Seok;Manivannan, S.;Moon, Jong-Hyun;Ahn, Jung-Sun;Jang, Jin;Park, Kyu-Chang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.782-785
    • /
    • 2007
  • We studied the effect of current-aging on field emission from carbon nanotubes field emitter arrays (CNT-FEAs) selectively patterned by the resist-assistan tpatterning(RAP) process. After sustaining the electric field when starting emission current density $(J_s)$ is $0.1\;mA/cm^2$ during 40 hrs, it was observed that the field emission property and uniformity were remarkably improved due to the elimination of oxygen atom and thus the reconstruction of carbon bonding at the tip of CNTs during field emission.

  • PDF

FIELD EMISSION CHARACTERISTICS OF DIAMOND FILMS

  • Park, Kyung-Ho;Lee, Soon-Il;Koh, Ken-Ha;Park, Jung-Il;Park, Kwang-Ja
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.505-511
    • /
    • 1996
  • The field emission characteristics of diamond films deposited by microwave plasma enhanced chemical vapor deposition (MPECVD) method were investigated. Diamond films were deposited on n-type Si(100) wafer using various mixtures of hydrogen and methane gas, and the I-V characteristics are measured. We observed that the field emission characteristics depend on the $CH_4$ concentration and the diamond film thickness. All the films show remarkable emission characteristics; low turn-on voltage, high emission current density at lower voltage, uniform stable current density, and good stability and reproducibility. The threshold field for producing a current density of 1mA/$\textrm{cm}^2$ is found as low as 7.6V/$\mu\textrm{m}$.

  • PDF

A unit pixel drive and field emission characteristics of oxidized porous polysilicon field emission display (산화된 다공질 폴리실리콘 전계방출 소자의 픽셀별 구동 및 특성)

  • You, Sung-Won;Kim, Jin-Eui;Choi, Sie-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.8
    • /
    • pp.8-15
    • /
    • 2007
  • In this paper, we fabricated the field emitter display using oxidized porous polysilicon(OPPS). Their field emission characteristics and the brightness were investigated for each pixel. The OPPS emitter was operated to each pixel using passive matrix for application of large panel display. We set up the proper thickness and width of upper electrode. The fine structure of OPPS was analyzed and the field emission characteristics of each pixel were investigated. As a result of field emission characteristics of different upper electrode thickness and width, we confirmed that the most efficient thickness was 2nm/7nm and increased the emission efficiency over the width of 2.5 mm. Even if field emission characteristics of each pixel was a little different but we confirmed the same leakage current and emission current, emission efficiency at each pixel. The leakage current and emission current was decreased according to the time increases but all of each pixel were uniformly decreased. We confirmed that the brightness of each pixel was not different and the brightness of OPPS field emitter was 700 cd/m2 at the Vps=20 V. Accordingly, the patterned OPPS field emitter can be applied to high quality field emission display devices.

Stablilization of Field Emission Current (Field Emission 전류의 안정화)

  • Yamamoto, Shigehiko
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.3
    • /
    • pp.335-338
    • /
    • 1993
  • 텅스텐으로 만들어진 field emitter와 탄소로 만들어진 field emitter에서 생기는 step이나 spike 형태의 잡음에 대하여 비교 연구하였다. 그리고 dispenser 형태의 field emiter와 array 형태의 field emitter와 같은 새로운 형태의 field emitter를 설명하였다.

  • PDF

Fabrication of triode type Ti-silicided field emission tip array (3극 티타늄 실리사이드 전계방출 팁 어레이의 제작)

  • Ohm, Woo-Yong
    • 전자공학회논문지 IE
    • /
    • v.44 no.3
    • /
    • pp.1-5
    • /
    • 2007
  • A new field emission tip array was realized by Ti silicidation of Ti coated Si tip, which has long term durability, chemical stability, and high emission current density. The fabricated Ti silicided FE tip array under high vacuum condition of about $10^{-8}Torr$ shows that the turn-on voltage is about 40V and the emission current is about $69{\mu}A$ when the bias of 150V is applied between anode and cathode of $100{\mu}m$ distance.

Enhancement of Field Emission Characteristics of CuO Nanowires Formed by Wet Chemical Process (습식공정으로 형성된 구리산화물 나노와이어의 전계방출특성 향상)

  • Sung Woo-Yong;Kim Wal-Jun;Lee Seung-Min;Lee Ho-Young;Park Kyung-Ho;Lee Soonil;Kim Yong-Hyup
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.6
    • /
    • pp.313-318
    • /
    • 2004
  • Vertically-aligned and uniformly-distributed CuO nanowires were formed on copper-coated Si substrates by wet chemical process, immersing them in a hot alkaline solution. The effects of hydrogen plasma treatment on the field emission characteristics of CuO nanowires were investigated. It was found that hydrogen plasma treatment enhanced the field emission properties of CuO nanowires by showing a decrease in turn-on voltage, and an increase in emission current density, and stability of current-voltage curves. However, the excessive hydrogen plasma treatment made the I-V curves unstable. It was confirmed by XPS (X-ray Photoelectron Spectroscopy) analysis that hydrogen plasma treatment deoxidized CuO nanowires, thereby the work function of the nanowires decreased from 4.35 eV (CuO) to 4.1 eV (Cu). It is thought that the decrease in the work function enhanced the field emission characteristics. It is well-known that the lower the work function, the better the field emission characteristics. The results suggest that the hydrogen plasma treatment is very effective in achieving enhanced field emission properties of the CuO nanowires, and there may exist an optimal hydrogen plasma treatment condition.

Mo-tip Field Emitter Array having Modified Gate Insulator Geometry (변형된 게이트 절연막 구조를 갖는 몰리브덴 팁 전계 방출 소자)

  • Ju, Byeong-Kwon;Kim, Hoon;Lee, Nam-Yang
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.1
    • /
    • pp.59-63
    • /
    • 2000
  • For the Mo-tip field emitter array, the method by which the geometrical structure of the gate insulator wall could be modified in order to improve field emission properties(turn-on voltage and gate leakage current). The device having a gate insulator of complex shape, which means the combined geometrical structure with round shape made by wet etching and vertical shape made by dry etching processes, was fabricated and the field emission properties of the three kinds of devices were compared. As a result, the electric field applied to tip apex could be increased and gate leakage current could be decreased by employing the gate insulator having geometrical wall structure of mixed shape. Finally, the obtained empirical results were analyzed by simulation of electric field distribution at/near the tip apex and gate insulator using SNU-FEAT simulator.

  • PDF

Field Emission from Single-Walled Carbon Nanotubes Aligned on a Gold Plate using Self-Assembly Monolayer

  • Lee, Ok-Joo;Jeong, Soo-Hwan;Lee, Kun-Hong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.305-308
    • /
    • 2002
  • Field emission from single-walled carbon nanotubes (SWNTs) aligned on a patterned gold surface is reported. The SWNTs emitters were prepared at room temperature by a self-assembly monolayer technique. SWNTs were cut into sub-micron length by sonication in an acidic solution. Cut SWNTs were attached on the gold surface by the reaction between the thiol groups and the gold surface. The field emission measurement showed that the turn-on field was 4.8 $V/{\mu}m$ at the emission current density of 10 ${\mu}A/cm^2$. The current density was 0.5 $mA/cm^2$ at 6.6 $V/{\mu}m$. This approach provides a novel route for fabricating CNT-based field emission displays.

  • PDF

Field emission properties of boron-doped diamond film (보론-도핑된 다이아몬드 박막의 전계방출 특성)

  • 강은아;최병구;노승정
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.2
    • /
    • pp.110-115
    • /
    • 2000
  • Deposition conditions of diamond thin films were optimized using hot-filament chemical vapor deposition (HFCVD). Boron-doped diamond thin films with varying boron densities were then fabricated using B4C solid pellets. Current-voltage responses and field emission currents were measured to test the characteristics of field emission display (FED). With the increase of boron doping, the crystal size of diamond decreased slightly, but its quality was not changed significantly in case of small doping. The I-V characterization was performed for Al/diamond/p-Si, and the current of doped diamond film was increased $10^4\sim10^5$ times as compared with that of undoped film. In the field emission properties, the electrons were emitted with low electric field with the increase of doping, while the emission current increased. The onset-field of electron emission was 15.5 V/$\mu\textrm{m}$ for 2 pellets, 13.6 V/$\mu\textrm{m}$ for 3 pellets and 11.1 V/$\mu\textrm{m}$ for 4 pellets. With the incorporation of boron, the slope of Fowler-Nordheim graph was decreased, revealing that the electron emission behavior was improved with the decrease of the effective barrier energy.

  • PDF

Effect of Surface Morphology and Adhesion Force on the Field Emisson Properties of Carbon Nanotube Based Cathode (탄소나노튜브 캐소드의 전계방출 특성에 대한 표면 형상과 부착력의 영향)

  • Jung, Hyuk;Cho, You-Suk;Kang, Young-Jin;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.18 no.5
    • /
    • pp.277-282
    • /
    • 2008
  • The effects of the field emission property in relation to the surface morphology and adhesion force were investigated. The single-wall-nanotube-based cathode was obtained by use of an in-situ arc discharge synthesis method, a screen-printing method and a spray method. The morphologies of the formed emitter layers were very different. The emission stability and uniformity were dramatically improved by employing an in-situ arc discharge synthesis method. In this study, it was confirmed that the current stability and uniformity of the field emission of the cathode depend on the surface morphology and adhesion force of the emitters. The current stability of the field emission device was also studied through an electrical aging process by varying the current and electric field.