• Title/Summary/Keyword: Field dependence

Search Result 955, Processing Time 0.022 seconds

The Anisotropy of the London Penetration Depth and the Upper Critical Field in C-doped $MgB_2$ Single Crystals from Reversible Magnetization

  • Kang, Byeong-Won;Park, Min-Seok;Lee, Hyun-Sook;Lee, Sung-Ik
    • Progress in Superconductivity
    • /
    • v.12 no.1
    • /
    • pp.36-40
    • /
    • 2010
  • We have studied the anisotropy of the London penetration depth of carbon doped $MgB_2$ single crystals, which was obtained from reversible magnetization measurements with the magnetic field both parallel and perpendicular to the c-axis. Similar to the pure $MgB_2$, the anisotropy of the upper critical field ${\gamma}_H$ decrease with temperature while the anisotropy of the London penetration depth ${\gamma}_{\lambda}$ slowly increases with temperature. However, the temperature dependence of ${\gamma}_H$ is drastically reduced and the value of ${\gamma}_{\lambda}$ becomes nearly ~1 as C is introduced. These results indicate that C substitution increases impurity scattering mainly in the $\sigma$ bands. The temperature dependence of the anisotropies agree well with the theoretical predictions with impurity scattering.

The Magnetic Field Dependence Properties of Quasi Two Dimensional Electron-piezoelectric Potential Interacting System in GaN and ZnO

  • Lee, S.H.;Sug, J.Y.;Lee, J.H.;Lee, J.T.
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.408-412
    • /
    • 2011
  • We investigated theoretically the magnetic field dependence of the quantum optical transition of qusi 2-Dimensional Landau splitting system, in GaN and ZnO. We apply the Quantum Transport theory (QTR) to the system in the confinement of electrons by square well confinement potential. We use the projected Liouville equation method with Equilibrium Average Projection Scheme (EAPS). Through the analysis of this work, we found the increasing properties of the optical Quantum Transition Line Shapes(QTLSs) which show the absorption power and the Quantum Transition Line Widths(QTLWs) with the magnetic-field in GaN and ZnO. We also found that QTLW, ${\gamma}(B)_{total}$ of GaN < ${\gamma}(B)_{total}$ of ZnO in the magnetic field region B < 25 Tesla.

Annealing Temperature Dependence of Exchange Bias Effect in Short Time Annealed NiFe/NiMn Bilayer Thin Film by FMR Measurement

  • Yoo, Yong-Goo;Park, Nam-Seok;Min, Seong-Gi;Yu, Seong-Cho
    • Journal of Magnetics
    • /
    • v.10 no.4
    • /
    • pp.133-136
    • /
    • 2005
  • The NiMn/NiFe bilayer structure which was short time annealed in order to induce unidirectional anisotropy were studied as a function of annealing temperature. The maximum exchange bias field of NiMn/NiFe bilayer was presented at $250^{\circ}C$ after short time annealing process with no external field. The appearance of exchange bias was due to phase transformation of NiMn layer. In plane angular dependence of a resonance field distribution which measured by FMR was analysed as a combined effect of unidirectional anisotropy and uniaxial anisotropy. The resonance field and the line width from FMR measurement were also analysed with annealing temperature.

COERCIVE FIELD AND SPIN-GLASS BEHAVIOR OF AMORPHOUS Y-Fe ALLOYS

  • Fujita, A.;Fukamichi, K.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.762-766
    • /
    • 1995
  • The coercive field $H_{c}$ of amorphous Y-Fe alloys in the spin-glass state has been investigated. Foramorphous $Y_{10}Fe_{90}$ alloy, the thermal variations of $H_{c}$ in the maximum external field $H_{max}=300,\;600$ and 1 k Oe exhibit a maximum. Since spin-glass behavior is strongly affected by external magnetic fields, the maximum point moves to lower temperature with increasing $H_{max}$. The appearance of the maximum in $H_{c}$ has been discussed in terms of the change of the spin-glass state in the external magnetic field. When the value of $H_{max}$ is 55 kOe, the temperature dependence of $H_{c}$ has no maximum and shows an exponential decrease with increasing temperature. Similar trends have been observed over a wide concentration range. The concentration dependence of $H_{c}$ is associated with the magnetic phase diagram.

  • PDF

Characteristics of the Angular-dependent Exchange Coupling Bias in Multilayer [Pt/Co]N-IrMn with Toward-in Plane Applied Fields (박막수직방향에서 면방향으로 회전하는 인가자기장에 대한 다층박막 [Pt/Co]N-IrMn의 교환바이어스의 각도의존특성)

  • Kim, S.S.;Yim, H.I.;Rhee, J.R.;Lee, S.S.;Hwang, D.G.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.4
    • /
    • pp.142-146
    • /
    • 2008
  • The angular dependence of the exchange bias($H_{ex}$) and coercivity($H_c$) in multilayer $[Pt/Co]_N-IrMn$ with applied measuring field rotated toward in-plane at angle $\theta$ from perpendicular-to-plane, has been measured. Multilayer films consisting of $Si/SiO_2/Ta(50)/Pt(4)/[Pt(15)/Co(t_{Co})]_N/IrMn(50)/Ta(50)(in\;{\AA})$ were prepared by magnetron sputtering under typical base pressure below $2{\times}10^{-8}$ Torr at room temperature. Magnetization measurements were performed on a vibrating sample magnetometer and extraordinary Hall voltage measurement systems after cooling from 550 K under a field of 2 kOe applied along the perpendicular to film direction. The hysteresis loop shifts from the origin not only along the field axis but also along the magnetization axis. $H_{ex}$ and $H_c$ show a $1/cos{\theta}$ and $1/|cos{\theta}|$ dependence on the angle($\theta$) between the applied measuring field and the perpendicular-film direction, respectively. This $1/cos{\theta}$ dependence can be accounted for by considering the angular dependence of strong out-of-plane magnetic anisotropy introduced during the field cooling.

Determination of the Dielectrophoretic Force on a Cell in a Micro Planar Electrode Structure

  • Park, Jung-Hoon;Lee, Sang-Wook;Kim, Yong-Kweon
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.4
    • /
    • pp.66-71
    • /
    • 1997
  • The dielectrophoretic(DEP) force acting on a cell in an electric field is experimentally determined. A cell is accelerated by the DEP force in an electric field generated between micro planar electrodes. the position of the cell is measured and the velocity and acceleration of the cell are calculated based on the measured position data. The DE force is determined from the motion equation of a moving cell in suspension. The electrode structure is fabricated by micromachining technology and the height of electrodes is 1 $\mu\textrm{m}$. Radish cell and yeast are used in th experiments. In the case of radish cell, the DEP force increases as voltage or frequency(1MHz∼3MHz) increases. The voltage dependence can be explained that the DEP force increases when ▽│E│$^2$increases. The frequency dependence means that Re[x\ulcorner] of radish cell is maximized in a certain frequency. In the case of yeast, the DEP force increases only as voltage increases. The reason for the voltage dependence is the same with the case of radish. The DEP force increases only as voltage increases. The reason for the voltage dependence is the same with the case of radish. The DEP force on a yeast does not vary when the frequency varies from 1MHz to 3MHz. This result coincides with the fact that the value of calculated Re[x\ulcorner] is constant in the test frequency range.

  • PDF

Angular Dependence of Ferromagnetic Resonance Linewidth in Exchange Coupled CoFe/MnIr Bilayers (교환 결합력을 갖는 CoFe/MnIr 박막에서 강자성 공명 선폭의 각도 의존성 연구)

  • Yoon, Seok Soo;Kim, Dong Young
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.2
    • /
    • pp.50-54
    • /
    • 2016
  • We analyzed the angular dependence of ferromagnetic resonance linewidth in exchange coupled CoFe/MnIr bilayers. The maximum and minimum linewidth was observed in the easy and hard direction of unidirectional anisotropy by exchange coupling, respectively, and it was well agreed with the angular dependence of exchange bias field. The maximum linewidth was due to the twist of CoFe magnetization near CoFe/MnIr interface from direction of pinned MnIr spin to direction of applied magnetic field. While, minimum linewidth more higher than that of CoFe was related to rotatable anisotropy field, and explained by easy axis distribution of MnIr grains.

The Relationships among Learners' Cognitive Variables, Motivational Variables, and Conceptual Understandings in Learning with Analogy (학습자의 인지 및 동기 변인들과 비유를 통한 개념 이해도의 관계)

  • Noh, Tae-Hee;Lim, Hee-Yeon;Kim, Chang-Min;Kang, Suk-Jin
    • Journal of The Korean Association For Science Education
    • /
    • v.19 no.3
    • /
    • pp.471-478
    • /
    • 1999
  • In this study, the relationships among learners' cognitive variables, motivational variables, and conceptual understandings in learning with analogy were investigated. The instruments regarding analogical reasoning ability, field dependence-independence, mental capacity, and logical thinking ability were administered. Some subtests (self-efficacy, expectancy, self-concept of ability, and value) of the Patterns of Adaptive Learning Survey were administered. After students learned with a worksheet that included analogy, a conception test regarding 'stoichiometry that included limiting reagent' was also administered. It was found that learners' conceptual understandings were significantly correlated with the logical thinking ability and the field dependence-independence among the cognitive variables, and the self-efficacy and the self-concept of ability among the motivational variables. The multiple regression analysis of the cognitive variables on conceptual understandings revealed that the logical thinking ability was the most significant predictor. The field dependence-independence also had predictive power. In the analysis of the motivational variables, the self concept of ability was the only significant predictor.

  • PDF

Field and Strain Dependence of the Critical Current and the n-value for an Internal-tin Processed $Nb_3Sn$ Strand (내부확산법으로 제조된 $Nb_3Sn$ 초전도 선재의 임계전류 및 n-값의 자장, 변이 의존성)

  • Oh, Sang-Jun;Choi, Hee-Kyung;Lee, Chul-Hee;Kim, Kee-Man
    • Progress in Superconductivity
    • /
    • v.9 no.2
    • /
    • pp.152-156
    • /
    • 2008
  • Detailed field and strain dependence of the critical current and the n-value for an internal-tin processed $Nb_3Sn$ strand have been measured. Both the compressive and tensile strain is applied reversibly using Walter spiral probe made of BeCu up to 0.73 %. There is a correlation between the critical current and the n-value for the $Nb_3Sn$ strand studied in this work and the field dependence of the n-value is in agreement with a recent empirical formula. It was further shown that the critical current can be reasonably well fitted by the scaling law based on strong-coupling theory of superconductivity using the relation between the critical current and the n-value.

  • PDF

Electric Field Dependence Experiments and ab Initio Calculations of Three Cytosine Tautomers in Superfluid Helium Nanodroplets

  • Min, Ah-Reum;Lee, Seung-Jun;Choi, Myong-Yong;Miller, Roger E.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.3039-3044
    • /
    • 2009
  • We report the first electric field dependence IR spectra of three cytosine tautomers solvated in helium nanodroplets. By using an electric field dependence on the three lowest energy tautomers of cytosine and ab initio calculations, we are able to measure the vibrational transition moment angles (VTMAs), specifically for the $NH_2$ symmetric stretch (SS) mode in this study, with more precision; thus we have reassigned the previous $NH_2$ (SS) VTMA of 74$^{\circ}$ for the C1 tautomer to 85$^{\circ}$, which the latter is in excellent agreement with the ab initio value. Nonplanarity of the three lowest energy tautomers of cytosine has been investigated by measuring the VTMA of each vibrational mode for the tautomers.