The Anisotropy of the London Penetration Depth and the Upper Critical Field in C-doped MgB₂ Single Crystals from Reversible Magnetization

Byeongwon Kang^{*, a}, Min-Seok Park^b, Hyun-Sook Lee^b and Sung-Ik Lee^c

^a Department of Physics, Chungbuk National University, Cheongju 361-763, Korea ^b Department of Physics, Pohang University of Science and Technology, Pohang, 790-784, Korea

^c Department of Physics, Sogang University, Seoul, 121-742, Korea

(Received 2 September 2010 revised or reviewed 5 October 2010 accepted 5 October 2010)

Abstract

We have studied the anisotropy of the London penetration depth of carbon doped MgB₂ single crystals, which was obtained from reversible magnetization measurements with the magnetic field both parallel and perpendicular to the c-axis. Similar to the pure MgB₂, the anisotropy of the upper critical field γ_{H} decrease with temperature while the anisotropy of the London penetration depth γ_{λ} slowly increases with temperature. However, the temperature dependence of γ_{H} is drastically reduced and the value of γ_{λ} becomes nearly ~1 as C is introduced. These results indicate that C substitution increases impurity scattering mainly in the σ bands. The temperature dependence of the anisotropies agree well with the theoretical predictions with impurity scattering.

Keywords : C-doped MgB₂, reversible magnetization, upper critical field, penetration depth

1. Introduction

It is now well established that MgB_2 is a two-gap superconductor with two-band: quasi-twodimensional σ bands and three-dimensional π bands [1-3]. One of the consequences of the two-band nature is the strong temperature dependence of the anisotropy of the upper critical field $(\gamma_H \equiv H_{c2}^{ab} / H_{c2}^{c})$ [4], which is in contrast to the single-gap Ginzburg-Landau theory. The strong temperature dependence of γ_{H} is thought to result from the interplay of two bands. Theoretical works have revealed that two different bands affect the behavior of γ_H such a way in which the anisotropic

 σ bands dominate in low temperature region while at temperatures near T_c , contribution from the isotropic π bands increases [5-7].

Another consequence of the multi-band nature of MgB₂ is that the anisotropy of the penetration depth (γ_{λ}), as well as the anisotropy of H_{c2} , may no longer be described by a single parameter [7-10]. In MgB₂, γ_{λ} is not necessarily the same as γ_{H} since the penetration depth depends on the total number of charge carriers from both the σ band and the π band while H_{c2} is mainly determined by the σ band. According to Kogan's calculation based on weak-coupling theory [8], γ_{λ} is isotropic at low temperature and increases to 2.5 near T_{c} . That behavior was confirmed by the first-principle calculations for the electronic structure and the

^{*} Corresponding author. Fax : +82-43-274-7811

E-mail : bwkang@chungbuk.ac.kr

electron-phonon interaction [11], which showed that the effect of impurity scattering changed the exact value of γ_{λ} . The above anomalous behaviors of $\gamma_{H}(T)$ and $\gamma_{\lambda}(T)$ for MgB₂ single crystals were confirmed by magnetization measurements [12, 13].

When impurity scattering increases, the behavior of H_{c2} is modified. According to the dirty-limit two-gap theory, the shape of the $H_{c2}(T)$ curve depends on the diffusivities of the σ and the π bands. $H_{c2}(0)$ is determined by a minimum diffusivity(dirtier bands) while $H_{c2}(T)$ is controlled by a maximum diffusivity (cleaner bands) at $T \approx T_c$. When the σ bands are dirtier, an upward curvature should appear near T_c , and γ_H should decrease with temperature. In contrast, when the π bands are dirtier, a huge increase in $H_{c2}(T)$ should appear at low temperatures without an upward curvature near T_c , and γ_H should increase with temperature.

In this paper, we investigated the effect of C doping on the temperature dependence of the anisotropies of the penetration depth γ_{λ} , and the upper critical field γ_H of MgB₂ single crystals by measuring reversible magnetization for both $H \parallel c$ and $H \parallel ab$. The reversible magnetization was analyzed by using the Hao-Clem model and the London model for $H \parallel c$ and $H \parallel ab$, respectively. γ_{H} and γ_{λ} were found to show an opposite temperature dependence as shown in pure MgB₂; γ_H decreases with temperature while γ_{λ} gradually increases with temperature. However, temperature dependence of γ_{H} is greatly reduced and γ_{λ} becomes more isotropic as C is introduced. These results agree well with the dirty-limit two-band theory.

2. Experiments

 $Mg(B_{0.95}C_{0.05})_2$ single crystals were grown using a high pressure technique, which is explained in detail in previous reports [14, 15]. Concentration of C was determined by using both electron probe X-ray

Fig. 1. Temperature dependence of the reversible magnetization, $4\pi M(T)$, of C-doped MgB₂ single crystals for various field ranges of $H \parallel c$ (data for only low fields are shown).

microanalysis and electron dispersive X-ray spectroscopy. 12 relatively hexagonal-shaped single crystals with typical dimensions of $200 \times 100 \times 25 \,\mu\text{m}^3$ were collected on a substrate with their *c* axis aligned perpendicular to the substrate surface. The values of the transition temperature T_c and the transition width ΔT_c determined from the low-field magnetization were 26 K and 2.4 K, respectively.

The measurement of the reversible and the irreversible magnetization were carried out by using a superconducting quantum interference device magnetometer (Quantum Design, MPMS-XL) with the fields up to 5 T applied parallel and perpendicular to the c axis of the sample.

3. Results and Discussion

Figure 1 shows, as an example, the temperature dependence of the reversible magnetization, $4\pi M(T)$, measured in the field range $0.1 \text{ T} \le H \le 0.9 \text{ T}$ with $H \parallel c$. The reversible region was determined in the temperature ranges at which the criterion $M_{FC}/M_{ZFC} \ge 0.95$ holds [16]. The reversible curves shifted to lower temperatures as the field was increased.

Fig. 2. Temperature dependence of the upper critical field for $H \parallel c$ and $H \parallel ab$ determined from the $4\pi M(T)$ curves. Solid lines are guide for eyes.

The temperature dependence of the upper critical fields of C-doped MgB₂ for $H \parallel c (H_{c2}^{c})$ and for $H \parallel ab$ (H_{c2}^{ab}) defined as the onset of the diamagnetic response at $4\pi M(H_{c2}) = 0$ were presented in Fig. 2. Temperature dependence of H_{c2}^{c} and H_{c2}^{ab} were found to be similar to those of pure MgB₂; H_{c2}^{c} is almost linear and H_{c2}^{ab} presents a positive curvature near T_c , leading to a decrease of the anisotropy of $H_{c2}(T)$ as the temperature approaches to T_c . While pure MgB₂ single crystals show a linear decrease in $H_{c2}^{c}(T)$ near T_c , a close inspection reveals an upward curvature with C doping, which is consistent with the dirty-limit two-gap theory.

To analyze reversible magnetization data for $H \parallel c$, we used the Hao-Clem model [17]. Since the applied fields are comparable with $H_{c2}^{c}(0)$, only the Hao-Clem model, which considers not only the electromagnetic energy outside of the vortex cores, but also the free energy changes arising from the cores, can permits a reliable description of the reversible magnetization in the *entire* mixed state. However, for $H \parallel ab$, the simpler London model can be utilized because $H_{c2}^{ab}(0)$ is much larger than the applied magnetic fields, therefore the contribution of

the core energy may not be as significant as it is for $H \parallel c$.

According to Kogan [18], the free energy of a uniaxial superconductor for which the anisotropy of the upper critical field, $\gamma_H = H_{c2}^{\ ab} / H_{c2}^{\ c}$, is different from the anisotropy of the penetration depth, $\gamma_{\lambda} = \lambda_c / \lambda_{ab}$, is given by

$$F = \frac{\phi_0 B \Theta_{\lambda}}{32\pi^2 \lambda_{ab}^2} \ln \left(\frac{2\sqrt{3}\gamma_H^{-2/3}\phi_0 \Theta_{\lambda}}{\xi^2 B (\Theta_{\lambda} + \Theta_H)^2} \right)$$
(1)

where $\Theta_{\lambda,H}(\theta) = (\sqrt{\sin^2 \theta + \gamma_{\lambda,H}^2 \cos^2 \theta}) / \gamma_{\lambda,H}$, ϕ_0 is the flux quantum, λ_{ab} is the in-plane penetration depth, and θ is the angle between the *c*-axis and the induction *B*. For $H \parallel c$ and $H \parallel ab$, the free energy becomes

$$F(\theta=0) = \frac{\phi_0 B}{32\pi^2 \lambda_{ab}^2} \ln\left(\frac{\sqrt{3}\gamma_H^{-2/3}\phi_0}{2\xi^2 B}\right)$$

and

$$F(\theta = \frac{\pi}{2}) = \frac{\phi_0 B}{32\pi^2 \lambda_{ab} \lambda_c} \ln\left(\frac{2\sqrt{3}\gamma_H^{-2/3}\phi_0 \gamma_\lambda^{-1}}{\xi^2 B(\gamma_\lambda^{-1} + \gamma_H^{-1})^2}\right)$$
(2)

respectively. These results reduce to that of the original London model when the various anisotropies are equal to each other. With these equations, we calculated both the in-plane and the out-of-plane penetration depth.

From the relation $M = -\partial F / \partial H$, the magnetization can be calculated. For $H \parallel ab$, the magnetization gives

$$\frac{\partial M}{\partial \ln H} = \frac{\phi_0}{32\pi^2 \lambda_{ab} \lambda_c}$$
(3)

if it is assumed that the logarithmic term in the magnetization does not change drastically. When this equation is combined with $\lambda_{ab}(T)$, $\lambda_c(T)$ can be determined. Figure 3 shows $\lambda_{ab}(T)$ and $\lambda_c(T)$

Fig. 3. Temperature dependence of the in-plane $[\lambda_{ab}(T)]$ and out-of-plane $[\lambda_c(T)]$ penetration depth. $\lambda_c(T)$ was calculated using the London model, and $\lambda_{ab}(T)$ was calculated using the Hao-Clem model. λ_c and λ_{ab} are almost isotropic.

calculated from the Hao-Clem model and the London model, respectively. A notable feature is that λ_{ab} and λ_c are nearly isotropic in low temperature region and start to diverge as the temperature is increased, which implies that the anisotropy of λ is closed to ~1 at low temperatures and slowly increases with the temperature. This tendency agrees well with the theory with two gaps.

We compared the temperature dependence of γ_{λ} and γ_{H} in Fig. 4. The values of γ_{H} were deduced from the values of $H_{c2}(T)$ shown in Fig. 2. Since $\gamma_{\mu}(T)$ obtained from the reversible magnetization was in the limited temperature range, we added $\gamma_{H}(T)$ obtained from the transport measurements. The temperature dependence of γ_H and γ_{λ} are observed to be similar to those of pure MgB₂; γ_{H} decreases with temperature, and γ_{λ} is nearly temperature independent and converges to the value of γ_{H} near T_{c} . Two differences are observed in C-doped MgB₂. First, the temperature dependence of γ_{H} is drastically reduced, which reflects that the anisotropic σ bands become more isotropic with C-doping. Second, the value of γ_{λ} decreases to ~1 over the temperature region measured. According to

Fig. 4. Temperature dependence of the anisotropy of $\lambda(\gamma_{\lambda})$ and the anisotropy of H_{c2} that were obtained from reversible magnetization and transport measurements.

the theoretical calculation [11], impurity scattering could change the exact value of γ_{λ} and impurities in the π band drastically enhance γ_{λ} . Combined with the reduced temperature dependence of γ_{H} , this result provides an experimental support for relative increase of impurity scattering in the σ bands than in the π bands due to C-doping.

4. Summary

We have investigated the anisotropies of the penetration depth and the upper critical field of 10% C-doped MgB₂ single crystals, obtained from the reversible magnetization for magnetic fields applied both perpendicular and parallel to the c-axis of the crystals. The reversible magnetization was analyzed using the Hao-Clem model for $H \parallel c$ and using the modified London model for $H \parallel ab$. The anisotropy of the upper critical field decreases with temperature while the anisotropy of the penetration depth remains nearly constant with temperature and two anisotropies converge at a value of 1 near T_c . The reduced temperature dependence of γ_H and the smaller value of γ_{λ} , compared to those in pure MgB₂, indicate that C substitution enhances

impurity scattering mainly in the σ bands over the π bands. The temperature dependence of the anisotropies agrees well with the theoretical predictions with impurity scattering.

Acknowledgement

This work was supported by a grant of the Global Partnership Program funded by the Ministry of Education, Science and Technology.

References

- A.Y. Liu, I.I. Mazin, J. Kortus, Phys. Rev. Lett. 87, 087005 (2001).
- [2] H. J. Choi, D. Roundy, H. Sun, M. L. Cohen, and S. G. Louie, Nature 418, 758 (2002).
- [3] S. Souma, Y. Machida, T. Sato, T. Takahashi, H. Matsui, S.-C. Wang, H. Ding, A. Kaminski, J. C. Campuzano, S. Sasaki, and K. Kadowaki, Nature **423**, 65 (2003).
- [4] L. Lyard, P. Samuely, P. Szabo, T. Klein, C. Marcenat, L. Paulius, K. H. P. Kim, C. U. Jung, H.-S. Lee, B. Kang, S. Choi, S.-I. Lee, J. Marcus, S. Blanchard, A. G. M. Jansen, U. Welp, G. Karapetrov, and W. K. Kwok, Phys. Rev. B 66, 180502(R) (2002).
- [5] T. Dahm and N. Schopohl, Phys. Rev. Lett. 91, 017001 (2003).
- [6] Gurevich, Phys. Rev. B 67, 184515 (2003).

- [7] A.A. Golubov, and A.E. Koshlev, Phys. Rev. B 68, 104503 (2003).
- [8] V.G. Kogan, Phys. Rev. B 66, 020509 (2002).
- [9] R. Cubitt, S. Levett, S. L. Bud'ko, N. E. Anderson, and P. C. Canfield, Phys. Rev. Lett. **90**, 157002 (2003).
- [10] R. Cubitt, M. R. Eskildsen, C. D. Dewhurst, J. Jun, S. M. Kazakov, and J. Karpinski, Phys. Rev. Lett. 91, 047002 (2003).
- [11] A. Golubov, A. Brinkman, O. V. Dolgov, J. Kortus, and O. Jepsen, Phys. Rev. B 66, 054524 (2002).
- [12] L. Lyard, P. Szabo, T. Klein, J. Marcus, C. Marcenat, K. H. Kim, B.W. Kang, H. S. Lee, and S. I. Lee, Phys. Rev. Lett. **92**,057001 (2004).
- [13] H.J. Kim, B. Kang, M.S. Park, K.H. Kim, H.S. Lee, and S. I. Lee, Phys. Rev. B 69, 184514 (2004).
- [14] Kijoon H. P. Kim, Jae-Hyuk Choi, C. U. Jung, P. Chowdhury, Hyun–Sook Lee, Min-Seok Park, Heon-Jung Kim, J. Y. Kim, Zhonglian Du, Eun-Mi Choi, Mun-Seog Kim, W. N. Kang, Sung-Ik Lee, Gun Yong Sung, and Jeong Yong Lee, Phys. Rev. B 65, 100510 (2002).
- [15] B. Kang, H.J. Kim, M.S. Park, K.H. Kim, and S.I. Lee, Phys. Rev. B 69, 144514 (2004).
- [16] M.-S. Kim, T. R. Lemberger, C. U. Jung, J.-H. Choi, J. Y. Kim, H.-J. Kim, and S.-I. Lee, Phys. Rev. B 66, 214509 (2002).
- [17] Z. Hao and J. R. Clem, Phys. Rev. Lett. 67, 2371 (1991).
- [18] V. G. Kogan, Phys. Rev. Lett. 89, 237005 (2002).