Browse > Article

The Anisotropy of the London Penetration Depth and the Upper Critical Field in C-doped $MgB_2$ Single Crystals from Reversible Magnetization  

Kang, Byeong-Won (Department of Physics, Chungbuk National University)
Park, Min-Seok (Department of Physics, Pohang University of Science and Technology)
Lee, Hyun-Sook (Department of Physics, Pohang University of Science and Technology)
Lee, Sung-Ik (Department of Physics, Sogang University)
Publication Information
Abstract
We have studied the anisotropy of the London penetration depth of carbon doped $MgB_2$ single crystals, which was obtained from reversible magnetization measurements with the magnetic field both parallel and perpendicular to the c-axis. Similar to the pure $MgB_2$, the anisotropy of the upper critical field ${\gamma}_H$ decrease with temperature while the anisotropy of the London penetration depth ${\gamma}_{\lambda}$ slowly increases with temperature. However, the temperature dependence of ${\gamma}_H$ is drastically reduced and the value of ${\gamma}_{\lambda}$ becomes nearly ~1 as C is introduced. These results indicate that C substitution increases impurity scattering mainly in the $\sigma$ bands. The temperature dependence of the anisotropies agree well with the theoretical predictions with impurity scattering.
Keywords
C-doped $MgB_2$; reversible magnetization; upper critical field; penetration depth;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Dahm and N. Schopohl, Phys. Rev. Lett. 91, 017001 (2003).   DOI   ScienceOn
2 Z. Hao and J. R. Clem, Phys. Rev. Lett. 67, 2371 (1991).   DOI   ScienceOn
3 H. J. Choi, D. Roundy, H. Sun, M. L. Cohen, and S. G. Louie, Nature 418, 758 (2002).   DOI   ScienceOn
4 V.G. Kogan, Phys. Rev. B 66, 020509 (2002).   DOI   ScienceOn
5 L. Lyard, P. Samuely, P. Szabo, T. Klein, C. Marcenat, L. Paulius, K. H. P. Kim, C. U. Jung, H.-S. Lee, B. Kang, S. Choi, S.-I. Lee, J. Marcus, S. Blanchard, A. G. M. Jansen, U. Welp, G. Karapetrov, and W. K. Kwok, Phys. Rev. B 66, 180502(R) (2002).   DOI
6 Gurevich, Phys. Rev. B 67, 184515 (2003).   DOI   ScienceOn
7 A.Y. Liu, I.I. Mazin, J. Kortus, Phys. Rev. Lett. 87, 087005 (2001).   DOI   ScienceOn
8 S. Souma, Y. Machida, T. Sato, T. Takahashi, H. Matsui, S.-C. Wang, H. Ding, A. Kaminski, J. C. Campuzano, S. Sasaki, and K. Kadowaki, Nature 423, 65 (2003).   DOI   ScienceOn
9 V. G. Kogan, Phys. Rev. Lett. 89, 237005 (2002).   DOI   ScienceOn
10 A.A. Golubov, and A.E. Koshlev, Phys. Rev. B 68, 104503 (2003).   DOI   ScienceOn
11 R. Cubitt, S. Levett, S. L. Bud'ko, N. E. Anderson, and P. C. Canfield, Phys. Rev. Lett. 90, 157002 (2003).   DOI   ScienceOn
12 R. Cubitt, M. R. Eskildsen, C. D. Dewhurst, J. Jun, S. M. Kazakov, and J. Karpinski, Phys. Rev. Lett. 91, 047002 (2003).   DOI   ScienceOn
13 A. Golubov, A. Brinkman, O. V. Dolgov, J. Kortus, and O. Jepsen, Phys. Rev. B 66, 054524 (2002).   DOI   ScienceOn
14 B. Kang, H.J. Kim, M.S. Park, K.H. Kim, and S.I. Lee, Phys. Rev. B 69, 144514 (2004).   DOI   ScienceOn
15 L. Lyard, P. Szabo, T. Klein, J. Marcus, C. Marcenat, K. H. Kim, B.W. Kang, H. S. Lee, and S. I. Lee, Phys. Rev. Lett. 92,057001 (2004).   DOI   ScienceOn
16 H.J. Kim, B. Kang, M.S. Park, K.H. Kim, H.S. Lee, and S. I. Lee, Phys. Rev. B 69, 184514 (2004).   DOI   ScienceOn
17 Kijoon H. P. Kim, Jae-Hyuk Choi, C. U. Jung, P. Chowdhury, Hyun–Sook Lee, Min-Seok Park, Heon-Jung Kim, J. Y. Kim, Zhonglian Du, Eun-Mi Choi, Mun-Seog Kim, W. N. Kang, Sung-Ik Lee, Gun Yong Sung, and Jeong Yong Lee, Phys. Rev. B 65, 100510 (2002).   DOI   ScienceOn
18 M.-S. Kim, T. R. Lemberger, C. U. Jung, J.-H. Choi, J. Y. Kim, H.-J. Kim, and S.-I. Lee, Phys. Rev. B 66, 214509 (2002).   DOI   ScienceOn