DOI QR코드

DOI QR Code

Electric Field Dependence Experiments and ab Initio Calculations of Three Cytosine Tautomers in Superfluid Helium Nanodroplets

  • Min, Ah-Reum (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Seung-Jun (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Choi, Myong-Yong (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Miller, Roger E. (Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill)
  • Published : 2009.12.20

Abstract

We report the first electric field dependence IR spectra of three cytosine tautomers solvated in helium nanodroplets. By using an electric field dependence on the three lowest energy tautomers of cytosine and ab initio calculations, we are able to measure the vibrational transition moment angles (VTMAs), specifically for the $NH_2$ symmetric stretch (SS) mode in this study, with more precision; thus we have reassigned the previous $NH_2$ (SS) VTMA of 74$^{\circ}$ for the C1 tautomer to 85$^{\circ}$, which the latter is in excellent agreement with the ab initio value. Nonplanarity of the three lowest energy tautomers of cytosine has been investigated by measuring the VTMA of each vibrational mode for the tautomers.

Keywords

References

  1. Dong, F.; Miller, R. E. Science 2002, 298, 1227 https://doi.org/10.1126/science.1076947
  2. Callahan, M. P.; Crews, B.; Abo-Riziq, A.; Grace, L.; de Vries, M. S.; Gengeliczki, Z.; Holmes, T. M.; Hill, G. A. Phys. Chem. Chem. Phys. 2007, 9, 4587 https://doi.org/10.1039/b705042a
  3. Mons, M.; Piuzzi, F.; Dimicoli, I.; Gorb, L.; Leszczynski, J. J. Phys. Chem. A 2006, 110, 10921 https://doi.org/10.1021/jp063738x
  4. Dian, B. C.; Longarte, A.; Zwier, T. S. Science 2002, 296, 2369 https://doi.org/10.1126/science.1071563
  5. Bakker, J. M.; Compagnon, I.; Meijer, G.; von Helden, G.; Kabelac, M.; Hobza, P.; de Vries, M. S. Phys. Chem. Chem. Phys. 2004, 6, 2810 https://doi.org/10.1039/b316158g
  6. Kim, H. M.; Han, K. Y.; Park, J.; Kim, S. K.; Kim, Z. H. J. Chem. Phys. 2008, 128, 184313/1
  7. Miller, R. E. J. Phys. Chem. 1986, 90, 3301 https://doi.org/10.1021/j100406a003
  8. Nahler, N. H.; Reinhard, B.; Udo, B.; Zsolt, B.; Gerber, R. B.; Bretislav, F. J. Chem. Phys. 2003, 119, 224 https://doi.org/10.1063/1.1577311
  9. Beuhler, R. J.; Bernstein, R. B.; Kramer, K. H. J. Am. Chem. Soc. 1966, 88:22, 5331 https://doi.org/10.1021/ja00974a059
  10. Brooks, P. R. Science 1976, 193, 11 https://doi.org/10.1126/science.193.4247.11
  11. Parker, D. H.; Jalink, H.; Stolte, S. J. Phys. Chem. 1987, 91, 5427 https://doi.org/10.1021/j100305a010
  12. Oudejans, L.; Miller, R. E. J. Chem. Phys. 2000, 113, 971 https://doi.org/10.1063/1.481877
  13. Nauta, K.; Miller, R. E. Phys. Rev. Lett. 1999, 82, 4480 https://doi.org/10.1103/PhysRevLett.82.4480
  14. Moore, D. T.; Oudejans, L.; Miller, R. E. J. Chem. Phys. 1999, 110, 197 https://doi.org/10.1063/1.478095
  15. Nauta, K.; Miller, R. E. Science 1999, 283, 1895 https://doi.org/10.1126/science.283.5409.1895
  16. Nauta, K.; Moore, D. T.; Stiles, P. L.; Miller, R. E. Science 2001, 292, 481 https://doi.org/10.1126/science.1058896
  17. Douberly, G. E.; Miller, R. E. J. Phys. Chem. B 2003, 107, 4500 https://doi.org/10.1021/jp022360+
  18. Choi, M. Y.; Dong, F.; Miller, R. E. Phil. Trans. R. Soc. A 2005, 363, 393 https://doi.org/10.1098/rsta.2004.1499
  19. Choi, M. Y.; Miller, R. E. Phys. Chem. Chem. Phys. 2005, 7, 3565 https://doi.org/10.1039/b507100c
  20. Choi, M. Y.; Miller, R. E. J. Phys. Chem. A 2006, 110, 9344 https://doi.org/10.1021/jp0624146
  21. Choi, M. Y.; Miller, R. E. J. Am. Chem. Soc. 2006, 128, 7320 https://doi.org/10.1021/ja060741l
  22. Choi, M. Y.; Miller, R. E. J. Phys. Chem. A 2007, 111, 2475 https://doi.org/10.1021/jp0674625
  23. Choi, M. Y.; Dong, F.; Han, S. W.; Miller, R. E. J. Phys. Chem. A 2008, 112, 7185 https://doi.org/10.1021/jp8012688
  24. Choi, M. Y.; Miller, R. E. Chem. Phys. Lett. 2009, 477, 276 https://doi.org/10.1016/j.cplett.2009.07.032
  25. Lee, S. J.; Choi, M. Y.; Miller, R. E. Chem. Phys. Lett. 2009, 475, 24 https://doi.org/10.1016/j.cplett.2009.05.016
  26. Nauta, K.; Miller, R. E. J. Chem. Phys. 1999, 111, 3426 https://doi.org/10.1063/1.479627
  27. Choi, M. Y.; Douberly, G. E.; Falconer, T. M.; Lewis, W. K.; Lindsay, C. M.; Merritt, J. M.; Stiles, P. L.; Miller, R. E. Int. Rev. Phys. Chem. 2006, 25, 15 https://doi.org/10.1080/01442350600625092
  28. Gough, T. E.; Mengel, M.; Rowntree, P. A.; Scoles, G. J. Chem. Phys. 1985, 83, 4958 https://doi.org/10.1063/1.449757
  29. Hartmann, M.; Miller, R. E.; Toennies, J. P.; Vilesov, A. Phys. Rev. Lett. 1995, 75, 1566 https://doi.org/10.1103/PhysRevLett.75.1566
  30. Block, P. A.; Bohac, E. J.; Miller, R. E. Phys. Rev. Lett. 1992, 68, 1303 https://doi.org/10.1103/PhysRevLett.68.1303
  31. Franks, K. J.; Li, H. Z.; Kong, W. J. Chem. Phys. 1999, 110, 11779
  32. Castle, K. J.; Abbott, J.; Peng, X.; Kong, W. J. Chem. Phys. 2000, 113, 1415
  33. Kong, W.; Bulthuis, J. J. Phys. Chem. A 2000, 104, 1055 https://doi.org/10.1021/jp993549x
  34. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Revision C.02 ed.; Gaussian, Inc.; Wallingford CT, 2004
  35. Callegari, C.; Lehmann, K. K.; Schmied, R.; Scoles, G. J. Chem. Phys. 2001, 115, 10090 https://doi.org/10.1063/1.1418746

Cited by

  1. Tautomers of cytosine and their excited electronic states: a matrix isolation spectroscopic and quantum chemical study vol.13, pp.15, 2011, https://doi.org/10.1039/c0cp02354j
  2. OH in 20 mol % DMSO(aq). Effect of Nucleophile on Acyl-Transfer Reaction vol.36, pp.12, 2015, https://doi.org/10.1002/bkcs.10567
  3. Anion variation on a cobalt(iii) complex of salen-type ligand tethered by four quaternary ammonium salts for CO2/epoxide copolymerization vol.39, pp.10, 2010, https://doi.org/10.1039/b920992a
  4. Infrared Spectroscopy of Imidazole Trimer in Helium Nanodroplets: Free NH Stretch Mode vol.32, pp.3, 2009, https://doi.org/10.5012/bkcs.2011.32.3.885
  5. Imidazole Trimer-Water Complexes in Superfluid Helium Nanodroplets: Water Stretching Modes vol.32, pp.4, 2009, https://doi.org/10.5012/bkcs.2011.32.4.1407
  6. CO2/ethylene oxide copolymerization and ligand variation for a highly active salen–cobalt(III) complex tethering 4 quaternary ammonium salts vol.42, pp.25, 2009, https://doi.org/10.1039/c2dt31854g
  7. Reactions of 2,4‐Dinitrophenyl 5‐substituted‐2‐thiophenecarboxylates with R 2 NH/R 2 NH 2+ in 20 Mol % DMSO(aq). Effects of 5 vol.40, pp.10, 2009, https://doi.org/10.1002/bkcs.11857
  8. A dynamic and electrostatic potential prediction of the prototropic tautomerism between imidazole 3-oxide and 1-hydroxyimidazole in external electric field vol.25, pp.11, 2019, https://doi.org/10.1007/s00894-019-4216-z