We propose two improved scalar multiplication methods on elliptic curves over $F_{{q}^{n}}$$q= 2^{m}$ using Frobenius expansion. The scalar multiplication of elliptic curves defined over subfield $F_q$ can be sped up by Frobenius expansion. Previous methods are restricted to the case of a small m. However, when m is small, it is hard to find curves having good cryptographic properties. Our methods are suitable for curves defined over medium-sized fields, that is, $10{\leq}m{\leq}20$. These methods are variants of the conventional multiple-base binary (MBB) method combined with the window method. One of our methods is for a polynomial basis representation with software implementation, and the other is for a normal basis representation with hardware implementation. Our software experiment shows that it is about 10% faster than the MBB method, which also uses Frobenius expansion, and about 20% faster than the Montgomery method, which is the fastest general method in polynomial basis implementation.
Efficient arithmetic design is essential to implement error correcting codes and cryptographic applications over finite fields. This article presents an efficient $AB^2$ multiplier in GF($2^m$) using a polynomial representation. The proposed multiplier produces the result in m clock cycles with a propagation delay of two AND gates and two XOR gates using O($2^m$) area-time complexity. The proposed multiplier is highly modular, and consists of regular blocks of AND and XOR logic gates. Especially, exponentiation, inversion, and division are more efficiently implemented by applying $AB^2$ multiplication repeatedly rather than AB multiplication. As compared to related works, the proposed multiplier has lower area-time complexity, computational delay, and execution time and is well suited to VLSI implementation.
행렬 곱셈은 과학 및 공학분야에 다양하게 응용되고 있다. 행렬 곱셈의 경우 지역성을 활용하면 수행 성능을 크게 개선할 수 있다. GPU가 장착된 PC에서 CPU의 컴퓨팅 능력과 GPU의 컴퓨팅 능력을 같이 활용하여 행렬 곱셈을 가속하는 방법을 제시하였다. 제안된 방법이 GPU만을 사용하는 것보다 약 15%~30%의 성능을 향상시켰다.
범자연수의 곱셈을 개념적으로 의미 있게 이해하기 위해서는 곱셈의 연산 성질에 대한 이해가 뒷받침되어야 한다. 이러한 필요성에 따라, 본 논문은 한국, 일본, 미국의 초등학교 수학교과서에서 범자연수 곱셈의 연산 성질을 어떻게 지도하는지 비교 분석하였다. 구체적으로 곱셈의 교환법칙, 결합법칙, 분배법칙을 처음 도입하는 맥락, 연산 성질을 활용하는 맥락, 연산 성질을 일반화하는 맥락으로 나누어 분석하였으며, 각각의 지도 맥락에서 어떠한 시각적 모델을 사용하는지도 함께 분석하였다. 분석 결과, 세나라는 (한 자리 수)${\times}$(한 자리 수)의 지도 맥락에서 곱셈의 연산 성질을 처음 도입한다는 점, 곱셈의 연산 성질을 지도할 때 세 나라가 모두 유사한 시각적 모델을 사용한다는 점 등에서 공통적인 경향성을 확인하였다. 그러나 두 자리 수 이상의 곱셈에서 곱셈의 연산 성질을 활용하거나 일반화하는 맥락에서는 나라별로 지도 방안의 측면에서 미묘한 차이가 있었다. 연구 결과를 토대로 국내의 초등학교 수학 교육에서 범자연수 곱셈의 연산 성질을 지도하는 방안에 관한 시사점을 논의하였다.
본 논문에서는 새로운 다정도 캐리 세이브 가산기를 이용한 dual-field상의 확장성 있는 Montgomery 곱셈기를 제안한다. 제안한 구조는 유한체 GFP(p)와 GF($2^m$)상의 곱셈 연산을 수행한다. 제안한 다정도 캐리 세이브 가산기는 두 개의 캐리 세이브 가산기로 구성되며, w-비트의 워드를 처리하기 위한 하나의 캐리 세이브 가산기는 n = [w/b] 개의 캐리 전파 가산기로 이루어진다. 여기서 b는 하나의 캐리 전파 가산기가 포함하는 dual-filed 가산기의 개수이다. 제안된 Montgomery 곱셈기는 기존의 연구결과에 비해 거의 동일한 시간 복잡도를 가지지만 낮은 하드웨어 복잡도를 가진다. 뿐만 아니라 제안한 연산기는 기존의 연구와 달리 연산의 종료 시 정확한 모듈러 곱셈의 결과를 출력한다. 더욱이 제안한 회로는 m과 w에 대해 높은 확장성을 가진다. 따라서 본 논문에서 제안한 구조는 암호응용을 위한 GF(p)와 GF($2^m$)상의 곱셈기로서 매우 적합하다 할 수 있다.
확장체 GF($p^n$)의 구성에서 차수와 다항식 곱셈 방법은 밀접한 관련을 가진다. 기존의 다항식 곱셈 방법인 KO] 및 MSK 방법은 효율적으로 계수-곱셈 연산량을 줄인다. 그러나 이들 방법을 이용하여 확장체 곱셈을 구성할 경우, 일반적으로 해당하는 분할 방법의 배수가 되도록 패딩(Padding)하여 구성하지만 이에 대한 기준이 모호하며 계수-곱셈의 연산량이 최소가 되도록 패딩하는 방법 또한 제안되지 않았다. 본 논문에서는 확장체 곱셈을 효율적으로 구성할 수 있는 기본적인 성질과 계수-곱셈의 연산량이 최소가 되는 다항식 차수를 찾는 알고리즘을 제안한다. 본 논문에서 제안하는 알고리즘을 적용하면 기존의 방법을 그대로 적용하여 구성할 때 보다 확장체의 차수가 증가할수록 더 많은 계수-곱셈 연산량을 줄일 수 있다. 따라서 본 논문의 결과는 스마트 카드 등 작은 공간 복잡도를 요구하는 병렬처리 곱셈기에 효율적으로 적용될 수 있다.
본 논문에서는 저 면적 타원곡선 암호프로세서를 위한 GF(2$^{m}$ )상의 새로운 산술 연산기를 제안한다. 제안된 연산기는 바이너리 확장 최대공약수 알고리즘과 MSB(Most Significant Bit) 우선 곱셈 알고리즘으로부터 하드웨어 공유를 통하여 LFSR(Linear Feed Back Shft Register)구조로 설계되었으며, 나눗셈 및 곱셈 모두를 수행 할 수 있다. 즉 나눗셈 모드에서 2m-1 클락 사이클 지연 후 나눗셈의 결과를 출력하며, 곱셈 모드에서 m 클락 사이클 지연 후 곱셈 결과를 각각 출력한다. 본 논문에서 제안된 연산기를 기존의 나눗셈기들과 비교 분석한 결과 적은 트랜지스터의 사용으로 계산 지연시간을 감소 시켰다. 또한 제안된 연산기는 기약다항식의 선택에 어떠한 제약도 두지 않을 뿐 아니라 매우 규칙적이고 묘듈화 하기 쉽기 때문에 필드 크기 m 에 대하여 높은 확장성 및 유연성을 제공한다 따라서, 본 연구에서 제안된 산술 연산기는 타원곡선 암호프로세서의 나눗셈 및 곱셈 연산기로 사용될 수 있다. 특히 스마트 카드나 무선통신기기와 같은 저 면적을 요구하는 응용들에 매우 적합하다.
Bernstein이 제안한 새로운 타원곡선 형태인 이진 에드워즈 곡선 (binary Edwards curves; BEdC)는 예외점이 없어 완전한 덧셈 법칙이 만족한다. 본 논문에서는 투영 좌표계를 적용한 BEdC 상의 점 스칼라 곱셈의 효율적인 하드웨어 구현에 대해 기술한다. 점 스칼라 곱셈을 위해 modified Montgomery ladder 알고리듬을 적용하였으며, 257-비트 이진 덧셈기와 이진 제곱기, 32-비트 이진 곱셈기를 사용하여 하위 이진체 연산을 구현했다. Zynq UltraScale+ MPSoC 디바이스에 구현하여 설계된 BEdC 크립토 코어를 검증하였으며, 점 스칼라 곱셈 연산에 521,535 클록 사이클이 소요된다.
This paper presents an energy-efficient (low power) prime-field hyperelliptic curve cryptography (HECC) processor with uniform power draw. The HECC processor performs divisor scalar multiplication on the Jacobian of genus 2 hyperelliptic curves defined over prime fields for arbitrary field and curve parameters. It supports the most frequent case of divisor doubling and addition. The optimized implementation, which is synthesized in a $0.13{\mu}m$ standard CMOS technology, performs an 81-bit divisor multiplication in 503 ms consuming only $6.55{\mu}J$ of energy (average power consumption is $12.76{\mu}W$). In addition, we present a technique to make the power consumption of the HECC processor more uniform and lower the peaks of its power consumption.
Let K be an imaginary quadratic field with ring of integers ${\mathcal{O}}_K$. Let E be an elliptic curve with complex multiplication by ${\mathcal{O}}_K$, and let $h_E$ be the Weber function on E. Let $N{\in}\{2,3,4,6\}$. We show that $h_E$ alone when evaluated at a certain N-torsion point on E generates the ray class field of K modulo $N{\mathcal{O}}_K$. This would be a partial answer to the question raised by Hasse and Ramachandra.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.