• 제목/요약/키워드: Field Effect Mobility

검색결과 517건 처리시간 0.034초

헴트 소자의 해석적 직류 모델 (An Analytical DC Model for HEMT's)

  • 김영민
    • 대한전자공학회논문지
    • /
    • 제26권6호
    • /
    • pp.38-47
    • /
    • 1989
  • 헴트(HEMT) 소자의 순수 해석적 DC모델이 2차원 전하제어 시뮬레이션 결과[4]에 기초하여 제작되었다. 이 모델에서는 2-DEG 채널의 전자 운송 역학에 확산 효과를 추가하였다. 이 확산효과는 기존 1차원 DC모델에서 사용하는 전자 이동도 및 문턱전압을 증가시키는 효과를 가졌음을 보였다. 또한 2-DEG 농도분포함수를 piecewise 선형화하여 HEMT 소자의 subthreshold 특성의 해석적 모델을 추가하였고, 따라서 2-DEG의 채널 두께 및 게이트 용량을 게이트 전압의 함수로 나타내었다. I-V curve의 전류포화영역에서의 기울기를 모델하는데는 gate 밑의 전자포화채널 지역에서의 전자채널두께와 채널길이 변조현상을 함께 고려하였다. Troffimenkoff형의 전장의존 전자이동도를 사용하여 I-V곡선의 포화현상을 모델하였다. 또한 기존 1차원 모델에서 감안되지 않은 2차원 효과가 실제 전류특성곡선에서 매우 중요한 역할을 하며, 이 효과가 효과적으로 1개의 보정상수f로 보상됨을 보였고, 물리적으로 이 상수가 채널 GCA 지역과 채널포화지역 사이에 형성되는 채널천이지역의 전자농도와 관계됨을 보였다.

  • PDF

Hot Wall Epitaxy (HWE)에 의한 $ZnGa_{2}Se_{4}$ 단결정 박막 성장과 광전기적 특성 (Growth and Optoelectric Characterization of $ZnGa_{2}Se_{4}$ Single Crystal Thin Films by Hot Wall Epitaxy)

  • 박창선;홍광준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.163-166
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the $ZnGa_{2}Se_{4}$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $ZnGa_{2}Se_{4}$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $610^{\circ}C$ and $450^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $ZnGa_{2}Se_{4}$ single crystal trun films measured from Hall effect by van der Pauw method are $9.63{\times}10^{17}cm^{-3}$, $296cm^{2}/V{\cdot}s$ at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c axis of the $ZnGa_{2}Se_{4}$ single crystal thin film, we have found that the values of spin orbit splitting $\Delta$ So and the crystal field splitting $\Delta$Cr were 251.9 meV and 183.2 meV at 10 K, respectively. From the photoluminescence measurement on $ZnGa_{2}Se_{4}$ single crystal thin film, we observed free excition (Ex) existing only high quality crystal and neutral bound exiciton $(A^{0},X)$ having very strong peak intensity. Then, the full-width-at -half-maximum(FWHM) and binding energy of neutral acceptor bound excition were 11 meV and 24.4 meV, respectivity. By Haynes rule, an activation energy of impurity was 122 meV.

  • PDF

Hot Wall Epitaxy (HWE)에 의한 $CdGa_{2}Se_{4}$ 단결정 박막 성장과 광전기적 특성 (Growth and Optoelectric Characterization of $CdGa_{2}Se_{4}$ Single Crystal Thin Films by Hot Wall Epitaxy)

  • 홍광준;박창선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.167-170
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the $CdGa_{2}Se_{4}$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $CdGa_{2}Se_{4}$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $630^{\circ}C$ and $420^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CdGa_{2}Se_{4}$ single crystal thin films measured from Hall effect by van der Pauw method are $8.27{\times}10^{17}cm^{-3},345cm^{2}/V{\cdot}s$ at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $CuInSe_{2}$ single crystal thin film, we have found that the values of spin orbit splitting $\Delta$ So and the crystal field splitting $\Delta$Cr were 106.5 meV and 418.9 meV at 10 K, respectively. From the photoluminescence measurement on $CdGa_{2}Se_{4}$ single crystal thin film, we observed free excition (Ex) existing only high Quality crystal and neutral bound exiciton $(D^{0},X)$ having very strong peak intensity. Then, the full-width-at-half-maximum(FWHM) and binding energy of neutral donor bound excition were 8 meV and 13.7 meV, respectivity. By Haynes rule, an activation energy of impurity was 137 meV.

  • PDF

P-Type Doping of Graphene Films by Hybridization with Nickel Nanoparticles

  • Lee, Su Il;Song, Wooseok;Kim, Yooseok;song, Inkyung;Park, Sangeun;Cha, Myung-Jun;Jung, Dae Sung;Jung, Min Wook;An, Ki-Seok;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.208-208
    • /
    • 2013
  • Graphene has emerged as a fascinating material for next-generation nanoelectronics due to its outstanding electronic properties. In particular, graphene-based field effect transistors (GFETs) have been a promising research subject due to their superior response times, which are due to extremely high electron mobility at room temperature. The biggest challenges in GFET applications are control of carrier concentration and opening the bandgap of graphene. To overcome these problems, three approaches to doping graphene have been developed. Here we demonstrate the decoration of Ni nanoparticles (NPs) on graphene films by simple annealing for p-type doping of graphene. Ni NPs/graphene films were fabricated by coating a $NiCl2{\cdot}6H2O$ solution onto graphene followedby annealing. Scanning electron microscopy and atomic force microscopy revealed that high-density, uniformly sized Ni NPs were formed on the graphene films and the density of the Ni NPs increased gradually with increasing $NiCl2{\cdot}6H2O$ concentration. The formation of Ni NPs on graphene films was explained by heat-driven dechlorination and subsequent particlization, as investigated by X-ray photoelectron spectroscopy. The doping effect of Ni NPs onto graphene films was verified by Raman spectroscopy and electrical transport measurements.

  • PDF

Wireless Communication at 310 GHz using GaAs High-Electron-Mobility Transistors for Detection

  • Blin, Stephane;Tohme, Lucie;Coquillat, Dominique;Horiguchi, Shogo;Minamikata, Yusuke;Hisatake, Shintaro;Nouvel, Philippe;Cohen, Thomas;Penarier, Annick;Cano, Fabrice;Varani, Luca;Knap, Wojciech;Nagatsuma, Tadao
    • Journal of Communications and Networks
    • /
    • 제15권6호
    • /
    • pp.559-568
    • /
    • 2013
  • We report on the first error-free terahertz (THz) wireless communication at 0.310 THz for data rates up to 8.2 Gbps using a 18-GHz-bandwidth GaAs/AlGaAs field-effect transistor as a detector. This result demonstrates that low-cost commercially-available plasma-wave transistors whose cut-off frequency is far below THz frequencies can be employed in THz communication. Wireless communication over 50 cm is presented at 1.4 Gbps using a uni-travelling-carrier photodiode as a source. Transistor integration is detailed, as it is essential to avoid any deleterious signals that would prevent successful communication. We observed an improvement of the bit error rate with increasing input THz power, followed by a degradation at high input power. Such a degradation appears at lower powers if the photodiode bias is smaller. Higher-data-rate communication is demonstrated using a frequency-multiplied source thanks to higher output power. Bit-error-rate measurements at data rates up to 10 Gbps are performed for different input THz powers. As expected, bit error rates degrade as data rate increases. However, degraded communication is observed at some specific data rates. This effect is probably due to deleterious cavity effects and/or impedance mismatches. Using such a system, realtime uncompressed high-definition video signal is successfully and robustly transmitted.

Hot Wall Epitaxy (HWE)에 의한$ZnGa_{2}Se_{4}$단결정 박막 성장과 광전기적 특성 (Growth and Optoelectric Characterization of $ZnGa_{2}Se_{4}$ Sing1e Crystal Thin Films)

  • 박창선;홍광준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.163-166
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the ZnGa$_2$Se$_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, ZnGa$_2$Se$_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were 61$0^{\circ}C$ and 45$0^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of ZnGa$_2$Se$_4$ single crystal thin films measured from Hall effect by van der Pauw method are 9.63x10$^{17}$ cm$^{-3}$ , 296 $\textrm{cm}^2$/V.s at 293 K, respectively, From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the ZnGa$_2$Se$_4$ single crystal thin film, we have found that the values of spin orbit splitting $\Delta$So and the crystal field splitting $\Delta$Cr were 251.9 MeV and 183.2 meV at 10 K, respectively. From the photoluminescence measurement on ZnGa$_2$Se$_4$ single crystal thin film, we observed free excition (E$_{x}$) existing only high quality crystal and neutral bound excition (A$^{0}$ ,X) having very strong peak intensity. Then, the full-width-at-half-maximum(FWHM) and binding energy of neutral acceptor bound excition were 11 meV and 24.4 meV, respectivity. By Haynes rule, an activation energy of impurity was 122 meV.on energy of impurity was 122 meV.

  • PDF

Hot Wall Epitaxy(HWE) 법에 의해 성장된 $AgGaSe_2$ 단결정 박막의 광전류 온도 의존성 (Temperature dependence of photocurrent spectra for $AgGaSe_2$ single crystal thin film grown by hot wall epitaxy)

  • 홍광준;방진주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.179-180
    • /
    • 2007
  • Single crystal $AgGaSe_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $AgGaSe_2$ source at $630^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $AgGaSe_2$ thin films measured with Hall effect by van der Pauw method are $4.05{\times}\;10^{16}/cm^3$, $139\;cm^2/V{\cdot}s$ at 293 K. respectively. The temperature dependence of the energy band gap of the $AgGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=1.9501\;eV\;-\;(8.79{\times}10^{-4}\;eV/K)T^2$/(T + 250 K). The crystal field and the spin-orbit splitting energies for the valence band of the $AgGaSe_2$ have been estimated to be 0.3132 eV and 0.3725 eV at 10 K, respectively, by means of the phcitocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}So$ definitely exists in the $\Gamma_5$ states of the valence band of the $AgGaSe_2$. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-, and $C_1$-exciton peaks for n = 1.

  • PDF

플라즈마 산화방법을 이용한 질소가 첨가된 실리콘 산화막의 제조와 산화막 내의 질소가 박막트랜지스터의 특성에 미치는 영향 (Low-Temperature Growth of N-doped SiO2 Layer Using Inductively-Coupled Plasma Oxidation and Its Effect on the Characteristics of Thin Film Transistors)

  • 김보현;이승렬;안경민;강승모;양용호;안병태
    • 한국재료학회지
    • /
    • 제19권1호
    • /
    • pp.37-43
    • /
    • 2009
  • Silicon dioxide as gate dielectrics was grown at $400^{\circ}C$ on a polycrystalline Si substrate by inductively coupled plasma oxidation using a mixture of $O_2$ and $N_2O$ to improve the performance of polycrystalline Si thin film transistors. In conventional high-temperature $N_2O$ annealing, nitrogen can be supplied to the $Si/SiO_2$ interface because a NO molecule can diffuse through the oxide. However, it was found that nitrogen cannot be supplied to the Si/$SiO_2$ interface by plasma oxidation as the $N_2O$ molecule is broken in the plasma and because a dense Si-N bond is formed at the $SiO_2$ surface, preventing further diffusion of nitrogen into the oxide. Nitrogen was added to the $Si/SiO_2$ interface by the plasma oxidation of mixtures of $O_2/N_2O$ gas, leading to an enhancement of the field effect mobility of polycrystalline Si TFTs due to the reduction in the number of trap densities at the interface and at the Si grain boundaries due to nitrogen passivation.

열처리 온도에 따른 Zn2SnO4 박막의 특성 (Effect of Annealing Temperatures on the Properties of Zn2SnO4 Thin Film)

  • 신종언;조신호
    • 열처리공학회지
    • /
    • 제32권2호
    • /
    • pp.74-78
    • /
    • 2019
  • $Zn_2SnO_4$ thin films were deposited on quartzs substrates by using radio-frequency magnetron sputtering system. Thermal treatments at various temperatures were performed to evaluate the effect of annealing temperatures on the properties of $Zn_2SnO_4$ thin films. Surface morphologies were examined by using field emission-scanning electron microscopy and showed that sizes of grains were slightly increased and grain boundaries were clear with increasing annealing temperatures. The deposited $Zn_2SnO_4$ thin films on quartzs substrates were amorphous structures and no distinguishable crystallographic changes were observed with variations of annealing temperatures. The optical transmittance was improved with increasing annealing temperatures and was over 90% in the wavelength region between 350 and 1100 nm at the annealing temperature of $600^{\circ}C$. The optical energy bandgaps, which derived from the absorbance of $Zn_2SnO_4$ thin films, were increased from 3.34 eV to 3.43 eV at the annealing temperatures of $450^{\circ}C$ and $600^{\circ}C$, respectively. As the annealing temperature was increased, the electron concentrations were decreased. The electron mobility was decreased and resistivity was increased with increasing annealing temperatures with exception of $450^{\circ}C$. These results indicate that heat treatments at higher annealing temperatures improve the optical and electrical properties of rf-sputtered $Zn_2SnO_4$ thin films.

4H-SiC와 산화막 계면에 대한 혼합된 일산화질소 가스를 이용한 산화 후속 열처리 효과 (Effect of High-Temperature Post-Oxidation Annealing in Diluted Nitric Oxide Gas on the SiO2/4H-SiC Interface)

  • 김인규;문정현
    • 한국전기전자재료학회논문지
    • /
    • 제37권1호
    • /
    • pp.101-105
    • /
    • 2024
  • 4H-SiC power metal-oxide-semiconductor field effect transistors (MOSFETs) have been developed to achieve lower specific-on-resistance (Ron,sp), and the gate oxides have been thermally grown. The poor channel mobility resulting from the high interface trap density (Dit) at the SiO2/4H-SiC interface significantly affects the higher switching loss of the power device. Therefore, the development of novel fabrication processes to enhance the quality of the SiO2/4H-SiC interface is required. In this paper, NO post-oxidation annealing (POA) by using the conditions of N2 diluted NO at a high temperature (1,300℃) is proposed to reduce the high interface trap density resulting from thermal oxidation. The NO POA is carried out in various NO ambient (0, 10, 50, and 100% NO mixed with 100, 90, 50, and 0% of high purity N2 gas to achieve the optimized condition while maintaining a high temperature (1,300℃). To confirm the optimized condition of the NO POA, measuring capacitance-voltage (C-V) and current-voltage (I-V), and time-of-flight secondary-ion mass spectrometry (ToF-SIMS) are employed. It is confirmed that the POA condition of 50% NO at 1,300℃ facilitates the equilibrium state of both the oxidation and nitridation at the SiO2/4H-SiC interface, thereby reducing the Dit.