• Title/Summary/Keyword: Fiber-reinforced cement composite

Search Result 120, Processing Time 0.027 seconds

Explosion Proof of Fiber Reinforced Cement Composite Panel subjected to Contact Explosion (접촉폭발에 의한 섬유보강 시멘트 복합체의 방폭성능)

  • Kim, Yun-Hwan;Kim, Gyu-Yong;Kim, Hong-Seop;Lee, Bo-Kyeong;Lee, Sang-Gyu;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.128-129
    • /
    • 2016
  • This paper evaluates experimentally the explosion proof of fiber reinforced cement composite(FRCC) panels with various fibers of 2 % volume fraction subjected to contact explosions using an emulsion explosive. As a results, the proportion of the total damage in FRCC panels is not biased scabbing on the rear side with contrast to plain panels, which means that the local damage of FRCC panels was significantly controlled. The experimental results presented useful information for prediction of limited thickness on the local damage subjected to contact explosions through comparison with existing damage evaluation prediction equations.

  • PDF

Strain Rate Effect on the Compressive and Tensile Strength of Hooked Steel Fiber and Polyamide Fiber Reinforced Cement Composite (변형 속도에 따른 후크형 강섬유 및 폴리아미드섬유보강 시멘트 복합체의 압축 및 인장강도 특성)

  • Kim, Hong-Seop;Kim, Gyu-Yong;Lee, Sang-Kyu;Son, Min-Jae;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.76-85
    • /
    • 2017
  • In this study, to evaluate the mechanical properties of fiber-reinforced cement composites by strain rate, hydraulic rapid loading test system was developed. And compressive and tensile strength of the hooked steel fiber and polyamide fiber reinforced cement composite were evaluated. As a result, the compressive strength, strain capacity and elastic modulus were increased with increasing strain rate. The effect of compressive strength by type and volume fraction of fibers was not significant. The dynamic increase factor(DIF) of the compressive strength was higher than that of the CEB-FIP model code 2010 and showed a trend similar to that of ACI-349. The tensile strength and strain capacity were increased with increasing strain rate. The hooked steel fibers were drawn from the matrix. The tensile strength and strain capacity of hooked steel fiber reinforced cement composites were increased as the strain rate increased. The tensile strength and deformation capacity of the fiber reinforced cement composites were increased. And, hooked steel fibers were drawn from the matrix. On the other hand, because the bonding properties of polyamide fiber and matrix is large, polyamide fiber was cut-off with out pullout from matrix. The strain rate effect on the tensile properties of polyamide fiber reinforced cement composites was found to be strongly affected by the tensile strength of the fibers.

Mechanical Properties of Carbon-Fiber Reinforced Polymer-Impregnated Cement Composites

  • Park, Seung-Bum;Yoon, Eui-Sik
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.65-77
    • /
    • 1999
  • A portland cement was reinforced by incorporating carbon fiber(CF), silica powder, and impregnating the pores with styrene monomers which were polymerized in situ. The effects of type, length, and volume loading of CF, mixing conditions, curing time and, curing conditions on mechanical behavior as well as freeze-thaw resistance and longer term stability of the carbon-fiber reinforced cement composites (CFRC) were investigated. The composite Paste exhibited a decrease in flow values linearly as the CF volume loadings increased. Tensile, compressive, and flexural strengths all generally increased as the CF loadings in the composite increased. Compressive strength decreased at CF loadings above approx. 3% in CFRC having no impregnated polymers due to the increase in porosity caused by the fibers. However, the polymer impregnation of CFRC improved all the strength values as compared with CFRC having no Polymer impregnation. Tensile stress-strain curves showed that polymer impregnation decreased the fracture energy of CFRC. Polymer impregnation clearly showed improvements in freeze-thaw resistance and drying shrinkage when compared with CFRC having no impregnated polymers.

  • PDF

Shear Strength and Permeability Characteristics of Soil Body Reinforced with Linear and Planar Reinforcing Materials (선형보강재와 평면보강재를 적용한 토체의 전단강도 및 투수특성)

  • 차경섭;장병욱;우철웅;박영곤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.6
    • /
    • pp.162-171
    • /
    • 2003
  • Traditional methods of earth reinforcement consist of introducing strips, fabrics, or grids into an earth mass. Recently, discrete fibers are simply added and mixed with the soil, much the same as cement, lime or other additives. The advantages of randomly distributed fibers is the maintenance of strength isotropy, low decrease in post-peak shear strength and high stability at failure. In this study, new composite reinforcement structures which consist of geotextile and randomly distributed discrete fibers were examined their engineering properties, such as shear strength of the composite reinforced soil and permeability of short fiber reinforced soil. The increments of shear strength of composite reinforced soils were the sum of increments by fiber and woven geotextile, respectively. The permeability of short fiber reinforced soil was increased with fiber mixing ratio.

Mechanical and Thermal Characteristics of Cement-Based Composite for Solar Thermal Energy Storage System (태양열 에너지 저장시스템 적용을 위한 시멘트 기반 복합재료의 역학 및 열적 특성)

  • Yang, In-Hwan;Kim, Kyoung-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.9-18
    • /
    • 2016
  • The thermal and mechanical properties of fiber-reinforced cement-based composite for solar thermal energy storage were investigated in this paper. The effect of the addition of different cement-based materials to Ordinary Portland cement on the thermal and mechanical characteristics of fiber-reinforced composite was investigated. Experiments were performed to measure mechanical properties including compressive strength before and after thermal cycling and split tensile strength, and to measure thermal properties including thermal conductivity and specific heat. Test results showed that the residual compressive strength of mixtures with OPC and slag was greatest among cement-based composite. Thermal conductivity of mixtures including graphite was greater than that of any other mixtures, indicating favor of graphite for improving thermal transfer in terms of charging and discharging in thermal energy storage system. The addition of CSA or zirconium increased specific heat of fiber-reinforced cement-based composite. Test results of this study could be actually used for the design of thermal energy storage system in concentrating solar power plants.

Effects of Matrix Strength, Fiber Type, and Fiber Content on the Electrical Resistivity of Steel-Fiber-Reinforced Cement Composites During Fiber Pullout (매트릭스 강도, 섬유 형식 및 보강량에 강섬유 보강 시멘트 복합재료의 인발시 전기저항에 미치는 영향)

  • Le, Huy Viet;Kim, Dong Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.675-689
    • /
    • 2019
  • Development of smart construction materials with both self-strain and self-damage sensing capacities is still difficult because of little information about the self-damage sensing source. Herein, we investigate the effects of the matrix strength, fiber geometry, and fiber content on the electrical resistivity of steel-fiber-reinforced cement composites by multi-fiber pullout testing combined with electrical resistivity measurements. The results reveal that the electrical resistivity of steel-fiber-reinforced cement composites clearly decreased during fiber-matrix debonding. A higher fiber-matrix interfacial bonding generally leads to a higher reduction in the electrical resistivity of the composite during fiber debonding due to the change in high electrical resistivity phase at the fiber-matrix interface. Higher matrix strengths, brass-coated steel fibers, and deformed steel fibers generally produced higher interfacial bond strengths and, consequently, a greater reduction in electrical resistivity during fiber debonding.

Axial Behavior of High Performance Fiber Reinforced Cementitious Composite Columns with PVA Fibers (PVA섬유를 사용한 고인성 시멘트 복합체 기둥의 압축거동)

  • Byun Jang-Bae;Jeon Su-Man;Jeon Esther;Kim Sun-Woo;Hwang Sun-Kyung;Yun Hyun-Do;Lim Byung-Hun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.29-32
    • /
    • 2005
  • An experimental investigation on the strength and behavior of High Performance Fiber Reinforced Cement Composite(HPFRCC) column with Polyvinyl alcohol(PVA) fibers under axial load have been carried out. The columns were subjected to monotonic axial compression until failure. The variables in this study are the combination ratio of PVA, and the volumetric ratio of transverse reinforcement. Test results showed that the fibers, when used in PVA2.0, could result in superior composite performance compared to their individual fiber reinforced cement composites.

  • PDF

Effect of Additives on the Strength Characteristics of MDF Cement Composites (MDF 시멘트 복합재료의 강도 특성에 미치는 첨가재의 영향)

  • 김태현;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.11
    • /
    • pp.893-899
    • /
    • 1992
  • Composite specimens, which are composed MDF cement of HAC-PVA system were prepared by adding carbon fiber, hydrated silica and SiC powder, and we studied effect of additives on the flexural strength of the composites. All of additives is effective in the improvement of flexural strength of the composite specimens. The size of average pore diameter in the specimens which have high flexural strength property was small. Specimen mixed with hydrated silica was effective in the particle compact property. Flexural strength of carbon fiber reinforced MDF cement composites were improved because of crack deflection of carbon fiber in cementitious matrix.

  • PDF

Effect of silane activation on shear bond strength of fiber-reinforced composite post to resin cement

  • Kim, Hyun-Dong;Lee, Joo-Hee;Ahn, Kang-Min;Kim, Hee-Sun;Cha, Hyun-Suk
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.104-109
    • /
    • 2013
  • PURPOSE. Among the surface treatment methods suggested to enhance the adhesion of resin cement to fiberreinforced composite posts, conflicting results have been obtained with silanization. In this study, the effects of silanization, heat activation after silanization, on the bond strength between fiber-reinforced composite post and resin cement were determined. MATERIALS AND METHODS. Six groups (n=7) were established to evaluate two types of fiber post (FRC Postec Plus, D.T. Light Post) and three surface treatments (no treatment; air drying; drying at $38^{\circ}C$). Every specimen were bonded with dual-curing resin cement (Variolink N) and stored in distilled water for 24 hours at $37^{\circ}C$. Shear-bond strength (MPa) between the fiber post and the resin cement were measured using universal testing device. The data were analyzed with 1-way ANOVA and by multiple comparisons according to Tukey's HSD (${\alpha}$=0.05). The effect of surface treatment, fiber post type, and the interactions between these two factors were analyzed using 2-way ANOVA and independent sample T-tests. RESULTS. Silanization of the FRC Postec Plus significantly increased bond strength compared with the respective non-treated control, whereas no effect was determined for the D.T. Light Post. Heat drying the silane coupling agent on to the fiberreinforced post did not significantly improve bond strength compared to air-syringe drying. CONCLUSION. The bond strength between the fiber-reinforced post and the resin cement was significantly increased with silanization in regards to the FRC Postec Plus post. Bond strength was not significantly improved by heat activation of the silane coupling agent.

An Experimental Study on the Development of Hybrid Discontinuous Fiber Reinforced Cementitious Composite (하이브리드형 단섬유보강 시멘트복합재료의 개발에 관한 실험적 연구)

  • 김영덕;조봉석;김재환;김용로;윤현도;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.57-60
    • /
    • 2003
  • Generally, normal concrete has the disadvantages of low tensile strength, low ductility and volume instability. To improve its performance, fiber reinforced cimentitious composite(FRCC) have been development. These composites are composed of cement, sand, water, a small amount of admixtures, and an optimal amount of fiber like synthetic fiber and steel fiber. This research investigates influence of sand, hybrid fiber and fiber volume fraction, and reports the test results of mechanical properties, fracture behavior and failure pattern of the FRCC. Our experiment was observed that sand mixed FRCC has lower compressive strength and higher bending strength than no sand mixed FRCC, and more steel fiber mixed FRCC has higher compressive strength and bending strength. Hybrid FRCC of steel and polypropylene had superior properties than FRCC of polypropylene only in same fiber volume fraction.

  • PDF