• Title/Summary/Keyword: Fiber Dispersion

Search Result 499, Processing Time 0.025 seconds

Effect of Carboxylic Acid Group of Functionalized Carbon Nanotubes on Properties of Electrospun Polyacrylonitrile (PAN) Fibers (기능화된 탄소나노튜브의 카르복실산이 전기방사된 폴리아크릴로니트릴 섬유의 물성에 미치는 영향)

  • Park, Ok-Kyung;Kim, Ju-Hyung;Lee, Sung-Ho;Lee, Joong-Hee;Chung, Yong-Sik;Kim, Jun-Kyung;Ku, Bon-Cheol
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.472-477
    • /
    • 2011
  • To study the effects of the acid group of functionalized MWNT (multiwalled carbon nanotube) on the thermal and mechanical properties of polyacrylonitrile(PAN) nanofibers, acid ($H_2SO_4/HNO_3$) treated MWNT (O-MWNT) were further functionalized by diazonium salt reaction with 5-aminoisophthalic acid (IPA). Compared to O-MWNT, IPA-MWNT with isophthalic acid group showed a better dispersion stability in polar solvents and IPA-MWNT/PAN composite film displayed lower heat of reaction (${\Delta}H$) than that of homo PAN when stabilized under air atmosphere. The continuous electrospun fibers were prepared using a conductive water bath. PAN fibers containing 1 wt% of IPA-MWNT showed an increase of tensile strength by 100% and tensile modulus by 240% compared to the PAN fibers without IPA-MWNT.

Characterizations of Water-dispersed Biocellulose Nanofibers on the Skin Surface (피부 표면에서의 수분산 바이오셀룰로오스 미세섬유의 특성에 대한 연구)

  • Jun, Seung-Hyun;Kim, Seo Yeon;Park, Sun Gyoo;Lee, Cheon Koo;Lee, Seol-Hoon;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.1
    • /
    • pp.89-94
    • /
    • 2018
  • In this study, water-dispersed biocellulose nanofibers (TC) were prepared via an oxidation reaction using 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical (TEMPO) as a catalyst. The TC retained their unique structure in water as well as in emulsion. TC adhered to the skin surface while maintaining nanofibrous structures, providing inherent functions of biocellulose, such as high tensile strength and high water-holding capacity. When gelatin gels as model skin were coated with TC, the hardness representing the elasticity was increased by 20% compared to untreated gelatin gel because TC could tightly hold the gelatin structure. When porcine skin was treated with TC and TC-contained O/W emulsion, the initial water contact angles of TC were lower than other materials, and dramatically decreased over time as water penetrated the fibrous structure of the TC film. Characterization of TC on the skin surface offered insight into the function of nanofibers on the skin, which is important for their applications with respect to fiber-cosmetics.

A phase synthesis time reversal impact imaging method for on-line composite structure monitoring

  • Qiu, Lei;Yuan, Shenfang
    • Smart Structures and Systems
    • /
    • v.8 no.3
    • /
    • pp.303-320
    • /
    • 2011
  • Comparing to active damage monitoring, impact localization on composite by using time reversal focusing method has several difficulties. First, the transfer function of the actuator-sensor path is difficult to be obtained because of the limitation that no impact experiment is permitted to perform on the real structure and the difficulty to model it because the performance of real aircraft composite is much more complicated comparing to metal structure. Second, the position of impact is unknown and can not be controlled as the excitation signal used in the active monitoring. This makes it not applicable to compare the difference between the excitation and the focused signal. Another difficulty is that impact signal is frequency broadband, giving rise to the difficulty to process virtual synthesis because of the highly dispersion nature of frequency broadband Lamb wave in plate-like structure. Aiming at developing a practical method for on-line localization of impact on aircraft composite structure which can take advantage of time reversal focusing and does not rely on the transfer function, a PZT sensor array based phase synthesis time reversal impact imaging method is proposed. The complex Shannon wavelet transform is presented to extract the frequency narrow-band signals from the impact responded signals of PZT sensors. A phase synthesis process of the frequency narrow-band signals is implemented to search the time reversal focusing position on the structure which represents the impact position. Evaluation experiments on a carbon fiber composite structure show that the proposed method realizes the impact imaging and localization with an error less than 1.5 cm. Discussion of the influence of velocity errors and measurement noise is also given in detail.

Participation in G-CLEF Preliminary Design Study by KASI

  • Kim, Kang-Min;Chun, Moo-Young;Park, Chan;Park, Sung-Joon;Kim, Jihun;Oh, Jae Sok;Jang, Jeong Gyun;Jang, Bi Ho;Tahk, Gyungmo;Nah, Jakyoung;Yu, Young Sam;Szentgyorgyi, Andrew;Norton, Timothy;Podgorski, William;Evans, Ian;Mueller, Mark;Uomoto, Alan;Crane, Jeffrey;Hare, Tyson
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.52.3-53
    • /
    • 2015
  • The GMT-Consortium Large Earth Finder (G-CLEF) is a fiber-fed, optical band high dispersion echelle spectrograph that selected as the first light instrument for the Giant Magellan Telescope (GMT). This G-CLEF has been designed to be a general- purpose echelle spectrograph with the precisional radial velocity (PRV) capability of 10 cm/sec as a goal. The preliminary design review (PDR) was held on April 8 to 10, 2015 and the scientific observations will be started in 2022 with four mirrors installed on GMT. We have been participating in this preliminary design study in flexure control camera (slit monitoring system), calibration lamp sources, dichroic assembly and the fabrication of the proto-Mangin Mirror. We present the design concept on the parts KASI undertaken, introducing the specifications and capabilities of G-CLEF.

  • PDF

Physicochemical Properties of Konjac Glucomannan (구약감자 Glucomannan의 이화학적 특성)

  • Kim, Nam-Soo;Ji, Soo-Kyung;Mok, Chul-Kyoon;Kim, Seung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.799-804
    • /
    • 1994
  • A 0.625% dispersion of the pretreated konjac (Amorphophallus konjac) flour was treated with 3 volumes of ethanol and the precipitate was dried at room temperature to produce purified glucomannan in 67.2% yield. Konjac glucomannan was analyzed for proximate composition and the contents of total dietary fiber and minerals. TLC analysis with a mobile phase of isopropanol : $H_2O$(4 : 1, v/v) revealed the presence of mannose and glucose as component sugars. The molecular mass of konjac glucomannan was in the range between 240 and 370 kDa as determined by HPLC with a Protein Pak 300SW column. Water holding capacity of konjac glucomannan was greater than those of most other gums except guar and xanthan gums. Konjac glucomannan accelerated foam formation of bovine serum albumin. As the concentration of konjac glucomannan increased up to 2%, maximum viscosity increased drastically, whereas the swelling time at maximum viscosity decreased. When swelling temperature increased, maximum viscosity and the swelling time at maximum viscosity decreased simultaneously.

  • PDF

Preparation and Performance Improvement of Polylactic acid based composites by stereocomplex (스테레오 컴플렉스를 이용한 폴리유산 복합재 제조 및 성능 개선)

  • Hong, Chae-Hwan;Kim, Yeon-Hee;Park, Jun-Seo;Nam, Byeong-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1671-1676
    • /
    • 2015
  • A unique crystallization behavior of poly(L-lactide)(PLLA)/poly(D-lactide)(PDLA) stereocomplex(SC) was observed when a PLLA/PDLA blend was subjected to the specific melting conditions. Therefore, we tried to blend PLLA and PDLA at overall composition to form PLA stereocomplexes. Moreover, impact modifier and reinforcement materials such as talc and glass fiber added to enhance the mechanical and thermal properties such as impact strength and heat distortion temperature(HDT). As a result, we got one representative result, one composite recipe with HDT $115^{\circ}C$. For more economic technology, we tried to blend PLLA and Polypropylene at overall composition and we got another representative result which could be applied to current PP/talc composites and ABS materials. The core technology of this might be the well dispersion of glass fibers into the matrix resin such as PP, PLLA and impact strength modifier.

Characteristics of Electrospun Poly(methyl methacrylate) Nanofibers Embedding Multi-Walled Carbon Nanotubes(MWNTs) (다중벽 탄소 나노튜브가 분산된 Poly(methyl methacrylate) 고분자 용액의 전기방사연구)

  • Kim Dong Ouk;Lee Dai-Hoi;Yoon Seong-sik;Lee Sun-Ae;Nam Jae Do
    • Polymer(Korea)
    • /
    • v.30 no.1
    • /
    • pp.90-94
    • /
    • 2006
  • An electrospinning process was used to fabricate poly(methyl methacrylate) (PMMA) nanofibers embedding multi-walled carbon nanotubes(MWNTs). SEM images showed that the nanofiber surface and structural morphology depended on solvent types (dimethyl formamide, chlor-form and toluene) and carbon nanotube contents (0.5 and $3.0\;wt\%$). Nano-fiber alignments could be controlled by adjusting the electrodes configuration at collector sites. Relationship between carbon nanotube and PMMA nanofiber was studied with radius of gyration of polymer chain and carbon nanotube sizes. As the carbon nanotube content ratio increased, the number of bead increased.

Artificial and Biological Particles in the Springtime Atmosphere

  • Ma, Chang-Jin;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.4
    • /
    • pp.209-216
    • /
    • 2013
  • This study focused on a comprehensive and detailed interpretation for the springtime air quality influenced by both artificial (particulate matter (PM) and asbestos) and biological (pollen) sources in Fukuoka Prefecture, Japan. An intensive measurement of PM was conducted at four characteristic sites (i.e., a heavy traffic area, a residential area, an industrial area, and a desolate area) in the Fukuoka Prefecture during spring of 2007. Analysis of major ionic species in $PM_{2.5}$ was performed by an Ion Chromatography, and asbestos and pollen were identified by Scanning Electron Microscopy with an energy dispersive X-ray spectrometer (EDX). $PM_{2.5}$ concentration ($65.3{\mu}gm^{-3}$) measured in an industrial area (site C) was extraordinarily high compared to those monitored in other areas; it greatly exceeded the Japan's $PM_{2.5}$ criteria (a daily average of $35{\mu}gm^{-3}$). NOAA's HYSPLIT dispersion model suggests that this high level of $PM_{2.5}$ monitored at site C is unlikely to affect the Asian continent. The ambient concentrations of $PM_{2.5}$-related anions ($NH_4{^+}$, $NO_3{^-}$, and $SO_4{^{2-}}$) and their relative contributions to $PM_{2.5}$ were also investigated in four study areas. The concentrations of these major water-soluble ions exhibit not only strong spatial dependence but also different ratios to each other. Asbestos fiber (crocidolite and amosite) concentration values changed in the range of 2.5 to 14.4 f per liter of air. The number of pollen grains showed that Cedar ranked higher in concentration than other types of pollen, with the maximum concentration at site A.

Environmentally Friendly Moisture-proof Paper with Superior Moisture Proof Property (I) -Properties of Moisture Proof Chemicals- (방습 효과가 우수한 환경친화적 방습지(제1보) -방습제의 특성-)

  • 유재국;조욱기;이명구
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.4
    • /
    • pp.15-20
    • /
    • 2001
  • The function of the moisture-proof paper is to prevent moisture from adsorbing into the packed goods. Water-vapor transmission rate of the moisture-proof paper should be less than 100g/$m^2$.24hr and the optimum rate would be less than 50g/$m^2$.24hr. In general the moisture-proof paper has been made by laminating polyethylene or polypropylene on top of the base paper. However this kind of moisture-proof paper has a problem in recycling so that it brings about environmental pollution. In general the moisture-proof paper has been made by laminating polyethylene or polypropylene on top of the base paper. However this kind of moisture-proof paper has a problem in recycling so that it brings about environmental pollution. The purpose of this paper was to make moisture-proof paper using the mixture of SB latex and wax emulsion which was recyclable and environmentally friendly. Water vapor transmission rate showed less than 50g/$m^2$.24hr in mixture ratio of 85:15, 87:13, 90:10. Especially the mixture ratio of 87:13 showed the most favorable water-vapor transmission rate. However, the moisture-proof layer was destroyed slightly by folding in packing. It has been observed that there was no close relationship between water-vapor transmission rate of the moisture-proof paper and grammage of the base paper, but the density of base paper had influenced on water vapor transmission rate. It was also observed that the moisture-proof paper could be recycled. The moisture-proof paper was similar to base paper in degree of the pulping, and there was no significant difference in dispersion between moisture-proof paper and base paper. Most of wax particles which caused the spots during drying process could be removed by flotation process. Tensile strength and tear strength of both moisture-proof paper and base paper after pulping were measured to examine the fiber bonding, and no significant difference in physical properties was observed.

  • PDF

Preparation and Characterization of Carbon Nanofiber Composite Coated Fabric-Heating Elements (탄소나노섬유복합체를 이용한 의류용 직물발열체의 제조 및 특성)

  • Kang, Hyunsuk;Lee, Sunhee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.39 no.2
    • /
    • pp.247-256
    • /
    • 2015
  • This study prepared fabric-heating elements of carbon nanofiber composite to characterize morphologies and electrical properties. Carbon nanofiber composite was prepared with 15wt% PVDF-HFP/acetone solution, and 0, 1, 2, 4, 8, and 16wt% carbon nanofiber. Dispersion of solution was conducted with stirring for a week, sonification for 24 hours, and storage for a month, until coating. Carbon nanofiber composite coated fabrics were prepared by knife-edge coating on nylon fabrics with a thickness of 0.1mm. The morphologies of carbon nanofiber composite coated fabrics were measured by FE-SEM. Surface resistance was determined by KS K0555 and worksurface tester. A heating-pad clamping device connected to a variable AC/DC power supply was used for the electric heating characteristics of the samples and multi-layer fabrics. An infrared camera applied voltages to samples while maintaining a certain distance from fabric surfaces. The results of morphologies indicated that the CNF content increased specifically to the visibility and presence of carbon nanofiber. The surface resistance test results revealed that an increased CNF content improved the performance of coated fabrics. The results of electric heating properties, surface temperatures and current of 16wt% carbon nanofiber composite coated fabrics were $80^{\circ}C$ and 0.35A in the application of a 20V current. Carbon nanofiber composite coated fabrics have excellent electrical characteristics as fabric-heating elements.