Browse > Article

Characteristics of Electrospun Poly(methyl methacrylate) Nanofibers Embedding Multi-Walled Carbon Nanotubes(MWNTs)  

Kim Dong Ouk (Department of Polymer Science and Engineering, Sungkyunkwan University)
Lee Dai-Hoi (Samsung SDI Corporate R&D Center)
Yoon Seong-sik (Department of Polymer Science and Engineering, Sungkyunkwan University)
Lee Sun-Ae (Department of Polymer Science and Engineering, Sungkyunkwan University)
Nam Jae Do (Department of Polymer Science and Engineering, Sungkyunkwan University)
Publication Information
Polymer(Korea) / v.30, no.1, 2006 , pp. 90-94 More about this Journal
Abstract
An electrospinning process was used to fabricate poly(methyl methacrylate) (PMMA) nanofibers embedding multi-walled carbon nanotubes(MWNTs). SEM images showed that the nanofiber surface and structural morphology depended on solvent types (dimethyl formamide, chlor-form and toluene) and carbon nanotube contents (0.5 and $3.0\;wt\%$). Nano-fiber alignments could be controlled by adjusting the electrodes configuration at collector sites. Relationship between carbon nanotube and PMMA nanofiber was studied with radius of gyration of polymer chain and carbon nanotube sizes. As the carbon nanotube content ratio increased, the number of bead increased.
Keywords
electrospinning; carbon nanotube; dispersion; alignment; radius of gyration;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, and A. G. Yodh, Nano Lett., 3, 269 (2003)   DOI   ScienceOn
2 Z. Zhou and D. Yan, Macromol. Theory Simul., 6, 597 (1997)   DOI   ScienceOn
3 F. Du, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer, and K. I. Winey, Macromolecules, 37, 9048 (2004)   DOI   ScienceOn
4 K. D. Ausman, R. Piner, O. Lourie, R. S. Ruoff, and M. Korobov, J. Phys. Chem. B, 104, 8911 (2000)   DOI   ScienceOn
5 A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordander, D. T. Cobert, and R. E. Smalley, Science, 269, 1550 (1995)   DOI   ScienceOn
6 A. Formhals, US Patent 1,975,504 (1934)
7 S. Megelski et al., Macromolecules, 35, 8456 (2002)   DOI   ScienceOn
8 P. G. Collins, A. Zettl, H. Bando, A. Thess, and R. E. Smalley, Science, 278, 100 (1997)   DOI
9 K. Yamamoto, S. Akita, and Y. Nakayama, Jpn. J. Appl. Phys., 35, L917 (1996)   DOI
10 W. A. de Heer, A. Chatelain, and D. Ugarte, Science, 270, 1179 (1995)   DOI   ScienceOn
11 M. S. Kumar et el., Chem. Phys. Lett., 383, 235 (2004)   DOI
12 G. E. Martin, I. D. Cockshott, and J. T. Fields, US Patent 4,044,404 (1977)
13 S. Iijima, Nature, 354, 56 (1991)   DOI
14 S. J. Park, M. S. Cho, S. T. Lim, H. J. Choi, and M. S. Jhon, Macromol. Rapid Commun., 24, 1070 (2003)   DOI   ScienceOn
15 S. A. Curran, P. M. Ajayan, W. J. Blau, D. L. Carroll, J. N. Coleman, A. B. Dalton, A. P. Davey, A. Drury, B. McCarthy, S. Maier, and A. Strevens, Adv. Mater., 10, 1091 (1988)   DOI   ScienceOn