DOI QR코드

DOI QR Code

Characterizations of Water-dispersed Biocellulose Nanofibers on the Skin Surface

피부 표면에서의 수분산 바이오셀룰로오스 미세섬유의 특성에 대한 연구

  • 전승현 ((주)LG생활건강 기술연구원) ;
  • 김서연 ((주)LG생활건강 기술연구원) ;
  • 박선규 ((주)LG생활건강 기술연구원) ;
  • 이천구 ((주)LG생활건강 기술연구원) ;
  • 이설훈 (동덕여자대학교 응용화학과 화장품과학 전공) ;
  • 강내규 ((주)LG생활건강 기술연구원)
  • Received : 2018.03.11
  • Accepted : 2018.03.26
  • Published : 2018.03.31

Abstract

In this study, water-dispersed biocellulose nanofibers (TC) were prepared via an oxidation reaction using 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical (TEMPO) as a catalyst. The TC retained their unique structure in water as well as in emulsion. TC adhered to the skin surface while maintaining nanofibrous structures, providing inherent functions of biocellulose, such as high tensile strength and high water-holding capacity. When gelatin gels as model skin were coated with TC, the hardness representing the elasticity was increased by 20% compared to untreated gelatin gel because TC could tightly hold the gelatin structure. When porcine skin was treated with TC and TC-contained O/W emulsion, the initial water contact angles of TC were lower than other materials, and dramatically decreased over time as water penetrated the fibrous structure of the TC film. Characterization of TC on the skin surface offered insight into the function of nanofibers on the skin, which is important for their applications with respect to fiber-cosmetics.

본 연구에서는 바이오셀룰로오스를 산화 촉매인 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical(TEMPO)을 이용해 카복실기로 치환된 수분산 바이오셀룰로오스 미세섬유(TC)를 합성하였다. 합성된 수분산 바이오셀룰로오스는 수용액 및 에멀젼에서도 그 구조를 유지하였다. 피부 표면에 미세섬유 구조로 안착된 수분산 바이오셀룰로오스는 바이오셀룰로오스의 고유의 물성인 물리적 강도, 수분 흡수능을 유지하였다. 모델 피부인 젤라틴 젤에 수분산 바이오셀룰로오스를 코팅 후 경도 측정 시, 바이오셀룰로오스 미세섬유가 피부 표면을 잡아주기 때문에 코팅하지 않았을 때에 비해 약 20% 증가하는 것을 확인하였다. 수분 흡수능을 측정하기 위해 돼지피부에 수분산 바이오셀룰로오스를 도포 후 접촉각을 측정하였을 때, 낮은 초기 접촉각을 가지면서도 시간에 따라 급격히 감소하는 것을 확인하였다. 또한 O/W 제형에서도 수분산 바이오셀룰로오스가 함유된 O/W 제형에서 시간에 따른 접촉각이 감소하는 것을 확인하였다. TC에 대한 연구는 피부 위에서의 미세섬유의 기능에 대한 새로운 인식을 제공할 뿐만 아니라, fiber-cosmetics이라는 새로운 개념의 화장품 제형 연구의 초석이 될 것으로 기대된다.

Keywords

References

  1. D. Klemm, B. Heublein, H. Fink, and A. Bohn, Polymer science cellulose: fascinating biopolymer and sustainable raw material, Angew. Chem. Int. Ed., 44, 3358 (2005). https://doi.org/10.1002/anie.200460587
  2. A. Svensson, E. Nicklasson, T. Harrah, B. Panilaitis, D. L. Kaplan, M. Brittberg, and P. Gatenholm, Bacterial cellulose as a potential scaffold for tissue engineering of cartilage, Biomaterials, 26, 419 (2005). https://doi.org/10.1016/j.biomaterials.2004.02.049
  3. N. Tahara, M. Tabuchi, K. Watanabe, H. Yano, Y. Morinaga, and F. Yoshinaga, Degree of polymerization of cellulose from Acetobacter xylinum BPR2001 decreased by cellulase produced by the strain, Biosci. Biotechnol. Biochem., 61, 1862 (1997). https://doi.org/10.1271/bbb.61.1862
  4. T. Naritomi, T. Kouda, H. Yano, and F. Yoshinaga, Effect of lactate on bacterial cellulose production from fructose in continuous culture, J. Ferment. Bioeng., 85, 89 (1998). https://doi.org/10.1016/S0922-338X(97)80360-1
  5. J. Lee, F. Deng, W. G. Yeomans, A. L. Allen, R. A. Gross, and D. A. Kaplan, Direct incorporation of glucosamine and N-acetylglucosamine into exopolymers by Gluconacetobacter xylinus (5 Acetobacter xylinum) ATCC 10245: production of chitosan-cellulose and chitin-cellulose exopolymers, Appl. Environ. Microbiol., 67, 3970 (2001). https://doi.org/10.1128/AEM.67.9.3970-3975.2001
  6. J. Shah and R. M. Brown, Towards electronic paper displays made from microbial cellulose, Appl. Microbiol.Biot., 66, 352 (2005). https://doi.org/10.1007/s00253-004-1756-6
  7. Q. Tarres, H. Oliver-Ortega, M. Llop, M. A. Pelach, M. Delgado-Aguilar, and P. Mutje, Effective and simple methodology to produce nanocellulose-based aerogels for selective oil removal, Cellulose, 23, 3077 (2016). https://doi.org/10.1007/s10570-016-1017-8
  8. R. A. de Carvalho, G. Veronese, A. J. F. Carvalho, E. Barbu, A. C. Amaral, and E. Trovatti, The potential of TEMPO-oxidized nanofibrillar cellulose beads for cell delivery applications, Cellulose, 23, 3399 (2016). https://doi.org/10.1007/s10570-016-1063-2
  9. Q. Tarres, M. Delgado-Aguilar, M. A. Pelach, I. Gonzalez, S. Boufi, and P. Mutje, Remarkable increase of paper strength by combining enzymatic cellulose nanofibers in bulk and TEMPO-oxidized nanofibers as coating, Cellulose, 23, 3939 (2016). https://doi.org/10.1007/s10570-016-1073-0
  10. T. Saito, Y. Nishiyama, J. L. Putaux, M. Vignon, and A. Isogai, Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose, Biomacromolecules, 7, 1687 (2006). https://doi.org/10.1021/bm060154s
  11. T. Saito, S. Kimura, Y. Nishiyama, and A. Isogai, Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose, Biomacromolecules, 8, 2485 (2007). https://doi.org/10.1021/bm0703970
  12. L. Fu, J. Zhang, and G. Yang, Present status and applications of bacterial cellulose-based materials for skin tissue repair, Carbohydr. Polym., 92, 1432 (2013). https://doi.org/10.1016/j.carbpol.2012.10.071
  13. J. D. Fontana, A. M. De Souza, C. K. Fontana, I. L. Torriani, J. C. Moreschi, B. J. Gallotti, S. J. De Souza, G. P. Narcisco, J. A. Bichara, and L. F X Farah, Acetobacter cellulose pellicle as a temporary skin substitute, Appl. Biochem. Biotechnol., 24-25, 253 (1990). https://doi.org/10.1007/BF02920250