• Title/Summary/Keyword: Ferromagnetism

Search Result 152, Processing Time 0.062 seconds

MAGNETOTRANSPORT IN AN N-TYPE DILUTED MAGNETIC SEMICONDUCTOR: (Ga,Mn)N

  • Lee, K. I.;Lee, J. M.;J. Y. Chang;S. H. Han;Lee, W. Y.;M. H. Ham;J. M. Myoung
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.148-149
    • /
    • 2002
  • In recent years, semiconductor spintronics has been rapidly developing due to potential device applications, in which the spin of charge carriers (electrons or holes) provides novel functionalities to carry signals and process information. Diluted magnetic semiconductors (DMSs) are well known to exhibit intriguing properties such as carrier-mediated ferromagnetism and spin-dependent transport resulting from the coupling between the charge transport states and the magnetic moments (spin) [1-3]. (omitted)

  • PDF

Preparation and Characterization of Multiferroic $0.7BiFeO_3-0.3BaTiO_3$ Thin Films by Pulsed Laser Deposition (펄스 레이저 증착법으로 제작된 다강체 $0.7BiFeO_3-0.3BaTiO_3$ 박막의 특성 연구)

  • Kim, Kyung-Man;Yang, Pan;Zhu, Jinsong;Joh, Young-Gull;Lee, Hee-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.88-88
    • /
    • 2009
  • $BiFeO_3$(BFO), when forming a solid solution with $BaTiO_3$(BTO), shows structural transformations over the entire compositional range, which not only gives a way to increase structural stability and electrical resistivity but also applies a means to have better ferromagnetic ordering. In this respect, we have prepared and studied 0.7BFO-0.3BTO thin films on $Pt(111)/TiO_2/SiO_2/Si$ substrates by pulsed laser deposition. Various deposition parameters, such as deposition temperature and oxygen pressure, have been optimized to get better quality films. Based on the X-ray diffraction results, thin films were successfully deposited at the temperature of $600^{\circ}C$ and an oxygen partial pressure of 10mTorr. The dielectric, ferroelectric, and magnetic properties have then been characterized. It was found that the films deposited under lower oxygen pressure corresponded to lower leakage current. Magnetism measurement showed an induced ferromagnetism. The microstructures associated with. the magnetic and dielectric properties of this mixed-perovskite solid solutions were observed by transmission electron. microscopy, which revealed the existence of complicated ferroelectric domains, suggested that the weak spontaneous magnetization was closely associated with the decrease in the extent of rhombohedral distortion by a partial substitution of $BaTiO_3$ for $BiFeO_3$.

  • PDF

Microstructure and Magnetic Properties of Pulsed DC Magnetron Sputtered Zn0.8Co0.2O Film Deposited at Various Substrate Temperatures (증착온도를 달리하여 제조한 Zn0.8Co0.2O 박막의 미세조직 및 자기 특성)

  • Kang, Young-Hun;Kim, Bong-Seok;Tai, Weon-Pil;Kim, Ki-Chul;Suh, Su-Jeung;Park, Tae-Seok;Kim, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.2 s.285
    • /
    • pp.79-84
    • /
    • 2006
  • We studied the microstructure and magnetic property of the pulsed DC magnetron sputtered $Zn_{\0.8}Co_{0.2}O$ film as a function of substrate temperatures. The X-ray patterns of the $Zn_{\0.8}Co_{0.2}O$ film showed a strong (002) preferential orientation at $500^{\circ}C$. The films with a crystallite size of 23-35 nm were grown in the form of nano-sized structure and this tendency was remarkable with increasing substrate temperature. The UV-visible result showed that the $Zn_{\0.8}Co_{0.2}O$ film prepared above $300^{\circ}C$ has a high optical transmittance of over $80\%$ in the visible region. The absorption bands were observed due to sp-d interchange action by $Co^{2+}$ complex ion and dd transition in the region from 500 to 700nm. The resistivity of the film was below $10^{-1}\;\Omega-cm\;above\;300^{\circ}C$. The AGM analysis results for the all films showed the magnetic hysteresis curves of ferromagnetic nature. The low electrical resistivity and room temperature ferromagnetism of ZnCoO thin films 'deposited above $300^{\circ}C$ suggested the possibility for the application to Diluted Magnetic Semiconductors (DMSs).

The Influence of W Addition on Cube Textured Ni Substrates for YBCO Coated Conductor (양축 정렬된 Ni 기판의 특성에 미치는 W 첨가의 효과)

  • Kim Kyu Tae;Lim Jun Hyung;Kim Jung Ho;Jang Seok Hern;Kim Ho-Jin;Joo Jinho;Kim Chan-Joong;Song Kyu Jung;Shin Hyung Sub
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.64-68
    • /
    • 2004
  • We fabricated cube-textured Ni and Ni-W alloy substrates for coated conductors and characterized the effects of W addition on microstructure, mechanical strength, and magnetic properties of the substrate. Pure Ni and Ni-(2, 3, 5at.%)W alloys were prepared by plasma arc melting, heavily cold rolled and then annealed at various temperatures of $600-1300^{\circ}C$. The texture was evaluated by pole-figure and orientation distribution function (ODF) analysis. Mechanical properties were investigated by micro Vickers hardness and tension test. Ferromagnetism of the substrate was measured by physical property measurement system (PPMS). It was observed that Ni-W substrates had sharp cube texture, and the full-width at half-maximums (FWHMs) of in-plane texture was $^{\circ}$-5.57$4.42^{\circ}$, which is better than that of pure Ni substrate. In addition cube texture of Ni-W substrates was retained at higher temperature up to $1300^{\circ}C$. Microstructural observation showed that the Ni-W substrates had fine grain size and higher mechanical properties than the pure Ni substrate. These improvements are probably due to strengthening mechanisms such as solid solution hardening and/or grain size strengthening. PPMS analysis showed that addition of W effectively reduced saturation magnetization in applied magnetic field and Curie temperature.

  • PDF

Structural and Magnetic Properties of Fe-Diluted Si Alloy Films by Pulsed-Laser Deposition (펄스레이저 증착법에 의한 Fe 희석된 Si 합금의 구조 및 자기 물성 연구)

  • Suh, Joo-Young;Lee, Kyung-Su;Pak, Sang-Woo;Kim, Eun-Kyu
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.5
    • /
    • pp.258-263
    • /
    • 2012
  • Fe-diluted Si alloys grown on p-type Si (100) substrates by pulsed-laser deposition method were studied for structural, electrical, and magnetic properties. The X-ray diffraction patterns for these alloy samples showed a few of peaks with cubic structures such as FeSi, $Fe_3Si$, and $Fe_4Si$. The Fe-composition in alloys are confirmed as Fe atomic percent about 1.25~6.49 % from energy dispersive spectroscopy measurement. The resistivity as a function of the reciprocal temperature was indicated an exponential increase with two activation energies of 5.21 and 7.79 meV. The maximum value of the magnetization at 10 K was about 100 emu/cc, and the ferromagnetism was also observed until 350 K from total magnetization as a function of temperature with applied magnetic field of 3,000 Oe.

PREPARATION AND CHARACTERIZATION OF MULTIFERROIC 0.8 $BiFeO_3$-0.2 $BaTiO_3$ THIN FIMLS BY PULSED LASER DEPOSITION

  • Kim, K.M.;Yang, P.;Zhu, J.S.;Lee, H.Y.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.313-313
    • /
    • 2010
  • $BiFeO_3$ (BFO), when forming a solid solution with $BaTiO_3$ (BTO), shows structural transformations over the entire compositional range, which not only gives a way to increase structural stability and electrical resistivity but also applies a means to have better ferromagnetic ordering. In this respect, we have prepared and studied 0.8 BFO-0.2 BTO thin films on Pt(111)/$TiO_2/SiO_2$/Si substrates by pulsed laser deposition. Various deposition parameters, such as deposition temperature and oxygen pressure, have been optimized to get better quality films. Based on the X-ray diffraction results, thin films were successfully deposited at the temperature of $700^{\circ}C$ and an oxygen partial pressure of 10mTorr and 330mTorr. The dielectric, ferroelectric, and magnetic properties have then been characterized. It was found that the films deposited under lower and higher oxygen pressure corresponded to lower leakage current. Magnetism measurement showed an induced ferromagnetism. The microstructures associated with the magnetic and dielectric properties of this mixed-perovskite solid solutions were observed by transmission electron microscopy, which revealed the existence of complicated ferroelectric domains, suggested that the weak spontaneous magnetization was closely associated with the decrease in the extent of rhombohedral distortion by a partial substitution of $BaTiO_3$ for $BiFeO_3$.

  • PDF

Carrier-enhanced Ferromagnetism in Cr-doped ZnO (Cr이 치환된 ZnO에서 나르개에 의한 강자성의 향상)

  • Sim, Jae-Ho;Kim, Hyo-Jin;Kim, Do-Jin;Ihm, Young-Eon;Yoon, Soon-Kil;Kim, Hyun-Jung;Choo, Woong-Kil
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.3
    • /
    • pp.181-185
    • /
    • 2005
  • We have investigated the effects of Al codoping on the structural, electrical transport, and magnetic properties of oxide diluted magnetic semiconductor $Zn_{1-x}Cr_xO$ thin films prepared by reactive sputtering. Nondoped $Zn_{0.99}Cr_{0.01}O$ thin films show semiconducting transport behavior and weak ferromagnetic characteristic. The Al doping increases the carrier concentration and results in an decrease of resistivity and metal-insulator transition behavior. With increasing carrier concentration, the magnetic properties drastically change, exhibiting a remarkable increase of the saturation magnetization. These results show carrier-enhanced ferromagnetic order in Cr-doped ZnO.