BR01

Optical Investigation on the Electronic Structure of La_{1-x}Sr_xCoO₃ with Complexity of Orbital Ordering and Ferromagnetism

Y. K. Seo¹, D. J. Lee¹, Y. S. Lee¹*, T. Miyazato², Y. Onose², A. Asamitsu², Y. Tokura², and K. Yamaura³

> ¹Department of Physics, Soongsil University, Seoul, Korea ²Cryogenic Research Center (CRC), University of Tokyo, Tokyo, Japan ³Department of Applied Physics, University of Tokyo, Tokyo, Japan ⁴NIMS, Tsukuba, Japan

*Corresponding author: Y. S. Lee, e-mail: ylee@ssu.ac.krylee@ssu.ac.kr

Perovskite Co-oxides have attracted much attention due to the complex interplay among charge, spin, and orbital with comparable energy scales between the magnetic exchange and crystal field splitting. Thermal excitation and charge carrier doping for the nonmagnetic ground state of LaCoO₃ allow peculiar magnetic interaction and electron-phonon coupling which lead to magnetic transition, orbital ordering, and insulator-metal transition. To get some spectroscopic understanding on these phenomena, we have performed optical measurements of single crystalline La_{1-x}Sr_xCoO₃ for $x = 0.18 \cdot 0.30$ in a wide photon energy region. While the ground states of all samples are ferromagnetic, electric properties varies from insulating to metallic with the increasing x, which are clearly identified in temperature-dependent optical conductivity spectra. These spectral features are compared with those of ferromagnetic SrCoO₃ with single valence of Co ions +4 and the intermediated spin state. Our findings are discussed in terms of dynamic orbital ordering and related magnetic correlation.

BR02

Fabrication and Characterization of (1-x)BiFeO₃-xBaTiO₃ Ceramics Prepared by Solid State Reaction Method

S. Chandarak^{1*}, M. Unruan¹, T. Sareein¹, A. Ngamjarurojana¹, S. Maensin², P. Laoratanakul³, S. Ananta¹, and R. Yimnirun¹

> ¹Department of Physics, Faculty of Science, Chiang Mai University, 50200, Thailand. ²Department of Physics, Faculty of Science, Khon Kaen University, 40002, Thailand. ³National Metal and Materials Technology Center (MTEC), Pathumthani 12120, Thailand

*Corresponding author. Tel.: +66-53-941921 ext 445; fax: +66-53-943445. E-mail address: Pinky_pure58@hotmail.com

Bismuth ferrite (BiFeO₃) - based materials are expected to have both ferroelectricity and ferromagnetism simultaneously. BiFeO₃ is a representative material which has ferroelectric (T_C : 1103 K) and antiferromagnetic (T_N : 634 K) properties. The crystallographic structure of BiFeO₃ is a rhombohedrally distorted perovskite structure. In addition, it is also known to exhibit weak ferromagnetism at room temperature due to a residual moment from a canted spin structure. The preparation of pure BiFeO₃ in the bulk form without traces of impurities has been a difficult task. Therefore, BiFeO₃-ABO₃ solid solution systems have attracted great attention as a means to increase structural stability. Furthermore, another serious problem of BiFeO₃-based ceramics is their low electrical resistivity, which affects the measurement of ferroelectric (dielectric) properties at ambient temperatures. BaTiO₃ is a prototype ferroelectric material with several excellent ferroelectric properties, and is expected that when mixed with BiFeO₃ both ferroelectricity and ferromagnetism can still exist in the compound formed.

In this study, BiFeO₃-BaTiO₃ ceramics have been fabricated by a solid state reaction method. The effects of BaTiO₃ content in $(l \cdot x)$ BiFeO₃-xBaTiO₃ (x = 0.1, 0.2, 0.25, 0.3, 0.4, 0.5) system on crystal structure, magnetic properties, dielectric and ferroelectric properties were investigated. Perovskite BiFeO₃ was stabilized through the formation of a solid solution with BaTiO₃. Rhombohedrally distorted structure $(l \cdot x)$ BiFeO₃-xBaTiO₃ ceramics showed very hard ferromagnetism at x = 0.25. Dielectric and ferroelectric properties of BiFeO₃-BaTiO₃ system also changed significantly with BaTiO₃ content. It was found that the maximum dielectric and ferroelectric properties were exhibited in BiFeO₃-BaTiO₃ system at x = 0.25. This confirmed the