• Title/Summary/Keyword: Ferrite Coil

Search Result 64, Processing Time 0.02 seconds

On-line measurement of metallurgical transformation in hot-rolled steel (열연공정의 온라인 변태율 측정장치)

  • Kim, Sang-Young;Kang, Myoung-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.711-713
    • /
    • 1997
  • The mechanical properties of a hot rolled steel is mostly governed by a cooling control on the run out table. During the cooling control, the hot rotted steel performs a metallurgical transformation(austenite ${\to}$ ferrite) which can be measured with a magnetic flux detector. The magnetic flux detector consisting of exciting and detecting coil can estimates the metallurgical transformation by measuring the variation of permeability in steel. We developed the method of detecting the magnetic property of hot rolled steel and processing the measured signal, Which makes possible to measure on-line metallurgical transformation.

  • PDF

Measuring, Method of the Intial Permeability of Magnetic Powder and Its Applications (자성분말의 초투자율 측정방법과 응용)

  • Jun, Hong-Bae;Heo, Jin;Kim, Chul-Han;SaGong, Geon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1687-1689
    • /
    • 2000
  • In this study, a measuring system of the initial permeability of soft-ferrite powder was developed by using a differential transformer coil. and was investigated demagnetizing factors. Magnetic powder is extensively used for a magnetic fluid and microwave absorber materials etc. In these applications, it is very important for us to measure the initial permeability of magnetic ceramic powder. Unfortunately there are not any measuring equipment and method directly up to the present.

  • PDF

Wireless Magnetic Pump: Characteristics of Magnetic Impellers and Medical Application

  • Song, Moon Kyou;Kim, Sung Hoon
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.344-351
    • /
    • 2017
  • Wireless magnet pumps are used in medical applications and are particularly useful as artificial heart ventricular assist devices (VADs). To investigate wireless operation of magnetic pumps, we fabricated three types of magnetic impellers using bonded magnets by blending magnetic powders of SmFeN, NdFeB, and Sr-ferrite. We investigated the magnetic properties of the fabricated magnetic impellers, which are driven by the application of magnetic coupling with an external driving magnet or external coil system, without a driving motor, shaft, or mechanical bearings. The use of wireless magnetic pumps is therefore not complicated by critical issues of size, heat, and vibration, which are very important issues for blood pumps. The magnetic properties of the impellers, such as their rotational speed, driving torque and hydrodynamic performance, determine their wireless driving ranges. We conducted performance evaluations of the impeller's magnetic wireless manipulation, heat, and vibration. In addition, we carried out an animal test to confirm the suitability of the wireless magnetic pumps for use as biventricular assist devices (BiVADs).

A Study on the Implementation of the 2-Dimension Magnetic Fluxgate Sensor (2차원 Magnetic Fluxgate센서의 구현에 관한 연구)

  • Park, Yong-Woo;Kim, Nam-Ho;Ryu, Ji-Goo
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.67-76
    • /
    • 2002
  • We have presented a 2-dimensional fluxgate sensor with ferrite core, excitation, and pick-up coil. This fluxgate sensor system consists of a sensing element, driving circuits for excitation coil and signal processing for detecting second harmonic frequency component which is proportional to the DC magnetic to be measured. The sensor core is excited by a square waveform of voltage through the excitation coil of 80 turns. The second harmonic output of pick-up coil(x and y axis: 100 turns) is measured by FFT spectrum analyzer. This result is compared with output of PSD(phase sensitive detector) unit for detecting the second harmonic component. The measured maximum sensitivity is about 1580 V/T at driving frequency of 1.5 kHz and excitation current of 2 App. The nonlinearity of this system is measured about 2.3%(PSD) and about 1%(second harmonics of the pick-up). The angle error of the system is ${\pm}2$ %/FS.

The Effect of Silane and Dispersant on the Packing in the Composite of Epoxy and Soft Magnetic Metal Powder (실란 및 분산제가 Epoxy와 연자성 금속 파우더 복합체의 Packing에 미치는 영향)

  • Lee, Chang Hyun;Shin, Hyo Soon;Yeo, Dong Hun;Nahm, Sahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.751-756
    • /
    • 2017
  • A molding-type power inductor is an inductor that uses a hybrid material that is prepared by mixing a ferrite metal powder coated with an insulating layer and an epoxy resin, which is injected into a coil-embedded mold and heated and cured. The fabrication of molding-type inductors requires various techniques such as for coil formation and insertion, improving the magnetic properties of soft magnetic metal powder, coating an insulating film on the magnetic powder surface, and increasing the packing density by well dispersing the powder in the epoxy resin. Among these aspects, researches on additives that can disperse the metal soft magnetic powder having the greatest performance in the epoxy resin with high charge have not been reported yet. In this study, we investigated the effect of silanes, KBM-303 and KBM-403, and a commercial dispersant on the dispersion of metal soft magnetic powders in epoxy resin. The sedimentation height and viscosity were measured, and it was confirmed that the silane KBM-303 was suitable for dispersion. For this silane, the packing density was as high as about 72.49%. Moreover, when 1.2 wt% of dispersant BYK-103 was added, the packing density was about 80.5%.

The Optimal Design and Leakage Flux Analysis of the Induction Heating Cooker (유도가열조리기의 최적설계 및 누설자속 해석)

  • Byun, Jin-Kyu;Park, Il-Han;Choi, Kyung;Jung, Hyun-Kyo;Hahn, Song-Yop;Roh, Hee-Succ;Kwon, Kyoung-An;Yang, Woo-Jong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.157-159
    • /
    • 1996
  • For the optimal design of the induction heating cooker, precise and accurate analysis of the magnetic field inside the jar must be achieved first. Until now, design methods based on experience has been used in industry field. But this takes a lot of trial and error, high cost and also long development time. So the analysis of the magnetic field distribution is very important. In this paper the magnetic field inside the induction heating cooker is analyzed by using axisymmetrical FEM(finite element method). And the method of the coil location design for the optimal heat source distribution using sensitivity analysis is developed. In addition, the shielding effect of the non-axisymmetrical 3-D ferrite structure used in induction heating cooker is also analyzed by the integral method.

  • PDF

Inductive Micro Displacement Detecting System with High Sensitivity and Low Linearity Error

  • Park, Dong-June;Park, In-Mook;Kim, Soo-Hyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.54-60
    • /
    • 2001
  • A newly designed inductive micro displacement detecting system is presented. The proposed inductive system consists of driving coils, position-detecting coils, cores, and closed-loop formed magnetic blocks. The cores and magnetic blocks are made of Mn-Zn ferrite. When AC sine wave is applied to the driving coils, the time derivative flux is generated within the system, and then induced voltages arise in the position-detecting coils according to the core\`s position. Putting the cores to be moved proportionally to the input displacement, the induced voltage is proportional to input displacement. The parameters that affect the system characteristics are turn ratio, air-gap size, excitation frequency, overlap area, load resistance, capacitance effect, and so forth. Based on the experimental results, the system parameters are selected in such a way as to have high sensitivity ad stable responses. The sensitivity of the proposed inductive displacement-detecting system is greater than 2800mV.V-1mm-1 and the linearity error is below $\pm$0.10% in the range of $\pm$200㎛.

  • PDF

Development of Auto-Tuning Geomagnetic Compass (자동 자기 왜곡보정 방위센서 개발)

  • Kim, Sang-Cheol;Lee, Yong-Beom;Han, Kil-Su;Im, Dong-Hyeok;Choi, Hong-Gi;Park, Woo-Pung;Lee, Woon-Yong
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.58-62
    • /
    • 2008
  • The need for position information in agriculture is gradually increasing for precise control farm vehicle and effective manage farm land. Though geomagnetic sensor has a lot of merits in estimating heading angle of vehicle because of low costs and sensing ability of magnetic north, it is easy that sensor outputs are distorted in electro magnetic field environment. This study was conducted to develop geomagnetic compass which could be available in measuring relative position from reference point correcting output distorted by external electro magnetic field in a small scale field. Magnetic inducing sensor (PNI's Vector2X) which wound enamel coated copper coil on ferrite core in order to measure and correct earth magnetic field. Magnetic azimuth was corrected using the algorithm which estimated amount of magnetic distortion from the difference between each outputs of magnetic sensors that located on the cross shaped base. Developed auto-tuning magnetic sensor was showed less then 5% as bearing accuracy in the strong magnetic field.

The Study on Electromagnetic Distribution of Electrodeless Fluorescent Lamp (무전극 형광램프의 페라이트 특성변화에 따른 전자계 분포)

  • Kim, Kwang-Soo;Jo, Ju-Ung;Her, In-Sung;Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1147-1150
    • /
    • 2003
  • The RF inductive discharge or inductively coupled plasma (ICP) continues to attract growing attention as an effective plasma source in many industrial applications, the best known of which are plasma processing and lighting technology Although most practical ICPs operate at 13.56 (MHz) and 2.65 (MHz), the trend to reduce the operating frequency is clearly recognizable from recent ICP developments. In an electrodeless fluorescent lamp, the use of a lower operating frequency simplifies and reduces cost of rf matching systems and rf generators and can eliminate capacitive coupling between the inductor coil and plasma, which could be a strong factor in wall erosion and plasma contamination. In this study, the configuration of ferrite and fixture which operates at the frequency of 2.65 (MHz) will be discussed, by using the electromagnetic simulation (Maxwell 2D).

  • PDF

A study on Properties Condition for the most suitable design of the Ring-shaped electrodeless fluorescent lamp (환형 무전극 형광램프의 최적 설계를 위한 특성조건 분석)

  • Jo, Ju-Ung;Lee, Seong-Jin;Nam, Joong-Hee;Choi, Yong-Sung;Kim, Yong-Kab;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.211-214
    • /
    • 2004
  • The advantage of ring-shaped electrodeless fluorescent lamp is the removal of internal electrodes and heating filaments that are a light-limiting factor of conventional fluorescent lamps. Therefore, the life time of ring-shaped electrodeless fluorescent lamps is substantially higher than that of conventional fluorescent lamps and last up to 60,000 hours and is intended as a high efficacy replacement for the incandescent reflector lamp in many applications. In this paper, maxwell 3D finite element analysis program(Ansoft) was used to obtain electromagnetic properties associated with the coil and nearby structures. The electromagnetic emitting properties were presented by 3D simulation software operated at 250[kHz] and some specific conditions

  • PDF