Browse > Article
http://dx.doi.org/10.4283/JMAG.2017.22.2.344

Wireless Magnetic Pump: Characteristics of Magnetic Impellers and Medical Application  

Song, Moon Kyou (Department of Electronics Convergence Engineering, Wonkwang University)
Kim, Sung Hoon (Department of Electronics Convergence Engineering, Wonkwang University)
Publication Information
Abstract
Wireless magnet pumps are used in medical applications and are particularly useful as artificial heart ventricular assist devices (VADs). To investigate wireless operation of magnetic pumps, we fabricated three types of magnetic impellers using bonded magnets by blending magnetic powders of SmFeN, NdFeB, and Sr-ferrite. We investigated the magnetic properties of the fabricated magnetic impellers, which are driven by the application of magnetic coupling with an external driving magnet or external coil system, without a driving motor, shaft, or mechanical bearings. The use of wireless magnetic pumps is therefore not complicated by critical issues of size, heat, and vibration, which are very important issues for blood pumps. The magnetic properties of the impellers, such as their rotational speed, driving torque and hydrodynamic performance, determine their wireless driving ranges. We conducted performance evaluations of the impeller's magnetic wireless manipulation, heat, and vibration. In addition, we carried out an animal test to confirm the suitability of the wireless magnetic pumps for use as biventricular assist devices (BiVADs).
Keywords
wireless magnetic pump; magnetic impeller; magnetic coupling; blood pump; magnetic powder;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Inzoli, E. Di Martino, G. Dubini, A. Redaelli, and R. Fumero, Int. J. Artif. Organs 19, 359 (1996).
2 W. Y. Moores, E. R. Kahn, M. M. Kirsh, O. Gago, E. A. Carrjr, G. D. Abrams, J. Dufek, and H. Sloan, Ann. Thorac. Surg. 12, 262 (1971).   DOI
3 Y. Wakisaka, T. Taenake, K. Chikanari, Y. Okuzono, S. Endo, and H. Takano, ASAIO J. 43, 608 (1997).   DOI
4 T. Yamame, J. Artif. Organs 5, 149 (2002).   DOI
5 D. J. Burke, E. Burke, F. Parsie, V. Poirier, K. Butler, D. Thomas, L. Taylor, and T. Maher, Artif. Organs 25, 380 (2001).   DOI
6 A. Hilton and G. Tansley, Artif. Organs 32, 772 (2008).   DOI
7 W. Hijikata, T. Shinshi, J. Asama, L. Li, H. Hoshi, S. Takatani, and A. Shimokohbe, Artif. Organs 32, 1 (2008).   DOI
8 W. Hijikata, H. Sobajima, T. Shinshi, Y. Nagamine, S. Wada, S. Takatani, and A. Shimokohbe, Artif. Organs 34, 669 (2010).
9 S. H. Kim, K. Ishiyama, S. Hashi, Y. Shiraishi, Y. Hayatsu, M. Akiyama, Y. Saiki, T. Yambe, Artif. Organs 37, 920 (2013).   DOI
10 J. W. Mulholland, J. C. Shelton, and X. Y. Luo, J. Fluids Struct. 20, 129 (2005).   DOI
11 T. Fukushi, S. H. Kim, S. Hashi, and K. Ishiyama, Smart Mater. Struct. 23, 607001 (2014).
12 B. J. Nelson, K. Kaliakatsos, and J. J. Abbott, Annu. Rev. Biomed. Eng. 12, 55 (2010).   DOI
13 K. B. Yesin, K. Vollmers, and B. J. Nelson, JIJRR. 25, 527 (2006).
14 S. H. Kim and K. Ishiyama, IEEE/ASME Trans. Mechatron. 19, 1651 (2014).   DOI
15 S. G. Kim, F. Qiu, S. H. Kim, A. Ghanbari, L. Zhang, and B. J. Nelson, Adv. Mater. 25, 5863 (2013).   DOI
16 S. Jeon, G. Jang, H. Choi, and S. Park, IEEE Trans. Magn. 46, 1943 (2010).   DOI
17 S. H. Kim, K. S. Shin, S. Hashi, and K. Ishiyama, IEEE Trans. Magn. 49, 3488 (2013).   DOI
18 M. Du, X. Ye, K. Wu, and Z. Zhou, Sensors 9, 2611 (2009).   DOI
19 S. H. Kim, J. W. Shin, and K. Ishiyama, IEEE Trans. Magn. 50, 4003404 (2014).
20 A. Mahoney and J. J Abbott, IEEE Trans. Robot. 30, 411 (2014).   DOI
21 A. Yamazaki, M. Sendoh, K. Ishiyama, K. I. Arai, and T. Hayase, IEEE Trans. Magn. 39, 3289 (2003).   DOI
22 L. Yobas, K. C. Tang, S. E. Yong, and E. K-Z. Ong, Lab. on a Chip. 8, 660 (2008).   DOI
23 J. Waaben, K. Andersen, and B. Husum, J. Thorac. Cardiovasc. Surg. 19, 149 (1985).