• Title/Summary/Keyword: Fermenter

Search Result 225, Processing Time 0.023 seconds

Optimization of Growth Medium Composition for Overproduction of Bacillus licheniformis Amylase in Recombinant Escherichia coli (Bacillus licheniformis amylase(BLMA)의 생산성 향상을 취한 재조합 대장균의 배지 최적화)

  • Nam, Seung-Hun;Lee, Woo-Jong;Byun, Tae-Gang;Seo, Jin-Ho;Park, Kwan-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.411-416
    • /
    • 1994
  • The research is concerned with optimization of growth medium composition in an attempt to improve the product yield of Bacillus licheniformis amylase (BLMA) in recombinant E. coli containing the BLMA gene. BLMA has the catalytic activity of producing branched oligosaccharides from starch. The medium optimization was performed in flask cultures based on the Box and Wilson method. The optimized medium is composed of tryptone 18.0 g/l, yeast extract 22.4 g/l, NaCl 5.3 g/l and glucose 2.1 g/l. In a jar fermenter culture with the conventional LB medium, the recombinant E. coli yielded 1.39 g/l of final dry cell mass and 5.11 U/ml of enzyme activity. In the optimized medium, however, the final cell mass was increased to 6.01 g/l and the enzyme activity to 23.2 U/ml. Medium optimization improved cell mass by 4.3 times and enzyme activity by 4.5 times. Such an increase in enzyme activity is mainly due to an enhancement of cell mass.

  • PDF

Effect of waste components on performance of acidogenic fermenter (음식물쓰레기의 구성성분에 따른 산발효조의 거동특성)

  • Han, Sun-Kee;Shin, Hang-Sik;Kim, Sang-Hyoun;Kim, Hyun-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.2
    • /
    • pp.65-70
    • /
    • 2002
  • The previous studies showed that rumen microorganisms had an enhanced waste-degrading capability and controlling the dilution rate was very effective in improving acidification efficiency. Generally the composition of food waste has a small deviation value, but one of the waste components (grains, vegetables or meats) can be increased dramatically depending on a seasonal variation. Thus, it is important to evaluate the efficiency of acidogenic fermentation in this case. Each component was spiked to be 80% of the total waste in R1 (grains), R2(vegetables), and R3 (meats). In Rl, rapid degradation occurred during the initial two days. R2 showed similar performance to that of general food waste. In R3, degradation retarded in the initial stage and then increased after controlling the dilution rate. The acidification efficiencies of the reactors were 88.7 (R1), 73.5 (R2), and 62.1% (R3), respectively. Therefore, the fermentation efficiency was kept over 62% regardless of waste components, indicating that it was stable to acidify food waste by employing rumen microorganisms and controlling the dilution rate.

  • PDF

Changes of Ginsenoside Content by Mushroom Mycelial Fermentation in Red Ginseng Extract

  • Bae, Song-Hwan;Lee, Hyun-Sun;Kim, Mi-Ryung;Kim, Sun-Young;Kim, Jin-Man;Suh, Hyung-Joo
    • Journal of Ginseng Research
    • /
    • v.35 no.2
    • /
    • pp.235-242
    • /
    • 2011
  • To obtain microorganisms for the microbial conversion of ginsenosides in red ginseng extract (RGE), mushroom mycelia were used for the fermentation of RGE. After fermentation, total sugar contents and polyohenol contents of the RGEs fermented with various mushrooms were not a significant increase between RGE and the ferments. But uronic acid content was relatively higher in the fermented RGEs cultured with Lentus edodes (2155.6 ${\mu}g/mL$), Phelllinus linteus (1690.9 ${\mu}g/mL$) and Inonotus obliquus 26137 and 26147 (1549.5 and 1670.7 ${\mu}g/mL$) compared to the RGE (1307.1 ${\mu}g/mL$). The RGEs fermented by Ph. linteus, Cordyceps militaris, and Grifola frondosa showed particularly high levels of total ginsenosides (20018.1, 17501.6, and 16267.0 ${\mu}g/mL$, respectively). The ferments with C. militaris (6974.2 ${\mu}g/mL$), Ph. linteus (9109.2 ${\mu}g/mL$), and G. frondosa (7023.0 ${\mu}g/mL$) also showed high levels of metabolites (sum of compound K, $Rh_1$, $Rg_5$, $Rk_1$, $Rg_3$, and $Rg_2$) compared to RGE (3615.9 ${\mu}g/mL$). Among four different RGE concentrations examined, a 20 brix concentration of RGE was favorable for the fermentation of Ph. linteus. Maximum biotransformation of ginsneoside metabolites (9395.5 ${\mu}g/mL$) was obtained after 5 days fermentation with Ph. linteus. Maximum mycelial growth of 2.6 mg/mL was achieved at 9 days, in which growth was not significantly different during 5 to 9 days fermentation. During fermentation of RGE by Ph. linteus in a 7 L fermenter, $Rg_3$, $Rg_5$, and $Rk_1$ contents showed maximum concentrations after 5 days similar to flask fermentation. These results confirm that fermentation with Ph. linteus is very useful for preparing minor ginsenoside metabolites while being safe for foods.

Enhancement of L-lysine Productivity by Strain Improvement and Optimization of Fermentation Conditions in Corynebacterium glutamicum (Corynebacterium glutamicum 균주 개량 및 발효 공정 최적화에 의한 L-lysine 생산성 증진)

  • Seo, Jin-Mi;Hyun, Hyung-Hwan
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.79-84
    • /
    • 2006
  • In order to minimize the reduction of lysine productivity by accumulation of lysine and byproducts in the end of fed-batch fermentations, a salt-tolerant mutant C14-49-3-15-7-3-20, which could grow at high concentrations of NaCl was isolated through mutagenesis from the Corynebacterium glutamicum mother strain I. In the evaluation of L-lysine productivity by fed-batch fermentations using a 5 L jar fermenter, the salt-tolerant mutant strain C14-49-3-15-7-3-20 produced 130.6 g/L of L-lysine with a 48.6% of yield. The mother strain I produced L-lysine concentration only 104.9 g/L with a yield 41.8%, implying the improvement of L-lysine productivity by introduction of salt-tolerance character.

Optimization of Submerged Cultivation of Hericium erinaceum (Hericium erinaceum 액체배양의 최적화)

  • Jung, Jae-Hyun;Lee, Keun-Eok;Lee, Shin-Young
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.96-102
    • /
    • 2006
  • Recently, it has been known that Hericium erinaceum is a one of the very useful functional materials with great attention in mushroom processing industry. In present study, a liquid culture which was not studied systematically until now, was conducted as a method of cultivation for H. erinaceum, and also examined the characteristics of the liquid culture and conditions of process optimization. A good basal medium was selected through the cultivation of 16 species mushroom media and the optimum condition for medium and cultivation were chosen by response surface method. From these results, the optimum condition of medium for mushroom was 3% glucose, 0.2% yeast extract/peptone(1:1) and 0.1% $KH_2PO_4/MgSO_4$(1:1) and also the optimal culture condition was obtained at inoculum of 13.42%, temperature of $22.3^{\circ}C$ and pH of 5.7. The mycelial dry weight of 9 g/I was obtained under these conditions and this amount was about 1.7 times higher than that which were cultivated in basal medium for 8 days.

Influence of Ammonium Phosphate on Mycelial Morphology during Submerged Cultivation of Ganoderma lucidum (영지의 액체배양에 있어서 균사체 형태에 미치는 Ammonium Phosphate의 영향)

  • Lee, Kyu-Min;Lee, Shin-Young
    • The Korean Journal of Mycology
    • /
    • v.29 no.2
    • /
    • pp.91-98
    • /
    • 2001
  • The mycelial morphology during submerged cultivation of Ganoderma ludium using by air-lift fermenter system were analyzed by image processing system and the characterization of mycelial morphology were investigated. In submerged culture using medium with different ammonium phosphate concentrations, the various morphological forms of G. lucidum mycelium were observed. The filamentous forms such as non-branched long filamentous mycelium, non-branched short mycelium, branched long filamentous mycelium, branched short mycelium, entangled mycelium and clump were observed, and also, and also, the pelleted forms such as smooth pellet, rough pellet and hollow rough pellet were observed. The mycelial morphology was changed from the filamentous to the pelleted forms by addition of ammonium phosphate. The fractal dimensions of pelleted and filamentous forms were 1.05 and 1.3, respectively, while the fractal dimension of mixtures of pelleted and filamentous forms was 1.16. Therefore, the fractal dimension was found to be more effective index for the detection of the mycelial morphology and morphological change during batch cultivation. The circularity was also found to be useful for evaluating the surface growth of pelleted mycelium.

  • PDF

Screening of Lactic Acid Bacteria for Strong Folate Synthesis and Optimization of Fermentation (고엽산 생산능의 유산균 탐색 및 발효 조건 최적화)

  • Du, Kyung Min;Park, Se Jin;Park, Myung Soo;Ji, Geun Eog
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.328-333
    • /
    • 2014
  • Folate is a water-soluble vitamin B that is required for the synthesis of amino acids and nucleic acids. It plays an important role in cell division and cell growth in several living organisms. The purpose of this study was to screen strong folate-synthesizing bacteria and to optimize their culture conditions for folate production. Folate production was quantified by microbiological assays by using folate-dependent strain Lactobacillus rhamnosus KCTC 3237. Folate derivatives were identified by LC-MS/MS. Of the 65 strains of bifidobacteria and lactobacilli tested, L. plantarum Fol 708 demonstrated the greatest ability to produce folate. Its optimal pH for folate production was 5.5 in a pH-controlled, lab-scale fermenter. Coculturing L. plantarum Fol 708 with L. brevis GABA 100 in a milk medium enhanced the level of folate produced in comparison to culturing L. plantarum Fol 708 alone.

A Study on Composition and Utilization of Waste Heat Recovery System Assuming Aerobic Liquid-composting Fermentation heat (호기성 액비화 발효열을 가정한 폐열회수시스템 구성 및 활용 연구)

  • Lim, Ryugap;Jang, Jae Kyung;Kang, Taegyung;Son, Jinkwan;Lee, Donggwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.56-66
    • /
    • 2021
  • In this study, a waste heat recovery system was devised and the performances of components incorporated to recover the heat generated during the processing of aerobic liquid-composting in a livestock manure treatment facility were analyzed. In addition, the availability of recovered heat was confirmed. The heat generated by liquid fermentation in the livestock manure treatment facility was also checked. Experimental temperatures were set at 35, 40, and 45 ℃ based on considerations of the uniformity of aerobic liquid-composting fermentation tank temperature and its operating range (34.5 ~ 43.9 ℃). Recovered heat energies from the combined heat exchanger, which consisted of PE and STS pipes, were 53.5, 65.6, 74.4 MJ/h, The heat pump of capacity 5 RT was heated at 95.6, 96.1, 98.9 MJ/h and the heating COPs of the pump were 4.53, 4.62, and 4.65, respectively. The maximum hot water production capacity of the heat exchanger assuming a fermentation tank temperature of 45 ℃ confirmed an energy supply of 56 360 kcal/day. The heating capacity of the FCU linked to the heat storage tank was 20.8 MJ/h, and the energy utilization efficiency was 96.1%. When livestock manure was dried using the FCU, it was confirmed that the initial function rate was reduced by 50.5 to 45.8 % after drying.

Mass Cultivation and Characterization of Multifunctional Bacillus velezensis GH1-13 (복합기능성 Bacillus velezensis GH1-13 균주의 대량배양 최적화 및 특성)

  • Park, Jun-Kyung;Kim, JuEun;Lee, Chul-Won;Song, JaeKyeong;Seo, Sun-Il;Bong, Ki-Moon;Kim, Dae-Hyuk;Kim, Pyoung Il
    • Korean Journal of Organic Agriculture
    • /
    • v.27 no.1
    • /
    • pp.65-76
    • /
    • 2019
  • Bacillus genus are found abundantly in various sites and their secondary metabolites were used as potential agents in agriculture, notably plant growth promoting and bio-control. The objective of this study was to develop the culture conditions of GH1-13 strain including higher cell growth, stable endospore-forming and enhancement of potential agents which are related with plant growth promoting and phytopathogen suppression. The optimal carbon and nitrogen sources were determined by glucose and soy bean flour, respectively, then resulted in $7.5{\times}10^9cells/mL$, $6.8{\times}10^9\;endospore\;cells/mL$ and sporulation yield of 90% after 30 h cultivation in 500 L submerged fermenter at $37^{\circ}C$, pH 7.0. Cells and cell-free supernatant of GH1-13 strains showed the potent antifungal activity against phytopathogenic fungi of Colletotrichum gloeosporioides. It was also confirmed that indole-3-acetic acid (IAA) production of GH1-13 strain was greatly increased by addition of 0.3% tryptophan.

Antimicrobial activities of Burkholderia sp. strains and optimization of culture conditions (Burkholderia sp. OS17의 항균활성 증진을 위한 배양최적화)

  • Nam, Young Ho;Choi, Ahyoung;Hwang, Buyng Su;Chung, Eu Jin
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.428-435
    • /
    • 2018
  • In this study, we isolated and identified bacteria from freshwater and soil collected from Osang reservoir, to screen antimicrobial bacteria against various pathogenic bacteria. 38 strains were isolated and assigned to the class Proteobacteria (22 strains), Actinobacteria (7 strains), Bacteroidets (6 strains), and Firmicutes (3 strains) based on 16S rRNA gene sequence analysis. Among them, strain OS17 showed a good growth inhibition against 5 methicillin-resistant Staphylococcus aureus subsp. aureus strains and Bacillus cereus, Bacillus subtilis, Filobasidium neoformans. As a result of the 16S rRNA gene sequence analysis, strain OS17 show the high similarity with Burkholderia ambifaria $AMMD^T$, B. diffusa $AM747629^T$, B. tettitorii $LK023503^T$ 99.8%, 99.7%, 99.6%, respectively. We investigated cell growth and antimicrobial activity according to commercial culture medium, temperature, pH for culture optimization of strain OS17. Optimal conditions for growth and antimicrobial activity in strain OS17 were found to be: YPD medium, $35^{\circ}C$ and pH 6.5. When the strain was cultured in LB, NB, TSB, R2A media at $20^{\circ}C$ and $25^{\circ}C$, the antimicrobial activity did not show. Culture filtrate of strain OS17 showed antimicrobial activity against 5 MRSA strains, Bacillus cereus, Bacillus subtilis, and Filobasidium neoformans with inhibition zones from 2 to 8 mm. Optimal reaction time was 48 h in YPD medium, 100 rpm and 0.3 vvm in 2 L-scale fed-batch fermentation process for antimicrobial activity. Culture optimization of strain OS17 can be improved on antimicrobial activity. Therefore, the antimicrobial activity of Burkholderia sp. OS17 had potential as antibiotics for pathogens including MRSA.