Browse > Article
http://dx.doi.org/10.7845/kjm.2018.8036

Antimicrobial activities of Burkholderia sp. strains and optimization of culture conditions  

Nam, Young Ho (Culture Techniques Research Division, Nakdonggang National Institute of Biological Resources (NNIBR))
Choi, Ahyoung (Culture Techniques Research Division, Nakdonggang National Institute of Biological Resources (NNIBR))
Hwang, Buyng Su (Bioresources Industrialization Research Division, Nakdonggang National Institute of Biological Resources (NNIBR))
Chung, Eu Jin (Culture Techniques Research Division, Nakdonggang National Institute of Biological Resources (NNIBR))
Publication Information
Korean Journal of Microbiology / v.54, no.4, 2018 , pp. 428-435 More about this Journal
Abstract
In this study, we isolated and identified bacteria from freshwater and soil collected from Osang reservoir, to screen antimicrobial bacteria against various pathogenic bacteria. 38 strains were isolated and assigned to the class Proteobacteria (22 strains), Actinobacteria (7 strains), Bacteroidets (6 strains), and Firmicutes (3 strains) based on 16S rRNA gene sequence analysis. Among them, strain OS17 showed a good growth inhibition against 5 methicillin-resistant Staphylococcus aureus subsp. aureus strains and Bacillus cereus, Bacillus subtilis, Filobasidium neoformans. As a result of the 16S rRNA gene sequence analysis, strain OS17 show the high similarity with Burkholderia ambifaria $AMMD^T$, B. diffusa $AM747629^T$, B. tettitorii $LK023503^T$ 99.8%, 99.7%, 99.6%, respectively. We investigated cell growth and antimicrobial activity according to commercial culture medium, temperature, pH for culture optimization of strain OS17. Optimal conditions for growth and antimicrobial activity in strain OS17 were found to be: YPD medium, $35^{\circ}C$ and pH 6.5. When the strain was cultured in LB, NB, TSB, R2A media at $20^{\circ}C$ and $25^{\circ}C$, the antimicrobial activity did not show. Culture filtrate of strain OS17 showed antimicrobial activity against 5 MRSA strains, Bacillus cereus, Bacillus subtilis, and Filobasidium neoformans with inhibition zones from 2 to 8 mm. Optimal reaction time was 48 h in YPD medium, 100 rpm and 0.3 vvm in 2 L-scale fed-batch fermentation process for antimicrobial activity. Culture optimization of strain OS17 can be improved on antimicrobial activity. Therefore, the antimicrobial activity of Burkholderia sp. OS17 had potential as antibiotics for pathogens including MRSA.
Keywords
Burkholderia sp.; Staphylococcus aureus; antimicrobial activity; methicillin-resistant;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Parker WL, Rathnum ML, Seiner V, Trejo WH, Principe PA, and Sykes RB. 1984. Cepacin A and cepacin B, two new antibiotics produced by Pseudomonas cepacia. J. Antibiot (Tokyo). 37, 431-440.   DOI
2 Parra-Cota Fl, Pena-Cabriales JJ, de Los Santos-Villalobos S, Martinez-Gallardo NA, and Delano-Frier JP. 2014. Burkholderia ambifaria and B. caribensis promote growth and increase yield in grain amaranth (Amaranthus cruentus and A. hypochondriacus) by improving plant nitrogen uptake. PLoS One 9, e88094.   DOI
3 Quan CS, Zheng W, Liu Q, Ohta Y, and Fan SD. 2006. Isolation and characterization of a novel Burkholderia cepacia with strong antifungal activity against Rhizoctonia solani. Appl. Microbiol. Biotechnol. 72, 1276-1284.   DOI
4 Saga T and Yamaguchi K. 2009. History of antimicrobial agents and resistant bacteria. JMAJ 52, 103-108.
5 Saitou N and Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
6 Suarez-Moreno ZR, Coutinho BG, Mendonca-Previato L, Previato L, James EK, and Venturi V. 2012. Common features of environmental and potentially beneficial plant-associated Burkholderia. Microb. Ecol. 63, 249-266.   DOI
7 Tawfik KA, Jeffs P, Bray B, Dubay G, Falkinham JO, Mesbah M, Youssef D, Khalifa S, and Schmidt EW. 2010. Burkholdines 1097 and 1229, potent antifungal peptides from Burkholderia ambifaria 2.2N. Org. Lett. 12, 664-666.   DOI
8 Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, and Higgins DG. 1997. The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882.   DOI
9 Vial L, Lepine F, Milot S, Groleau MC, Dekimpe V, Woods DE, and Deziel E. 2008. Burkholderia pseudomallei, B. thailandensis, and B. ambifaria produce 4-hydroxy-2-alkylquinoline analogues with a methyl group at the 3 position that is required for quorumsensing regulation. J. Bacteriol. 190, 5339-5352.   DOI
10 Vandamme P, Opelt K, Knochel N, Berg C, Schonmann S, Brandt E, Eberl L, Falsen E, and Berg G. 2007. Burkholderia bryophila sp. nov. and Burkholderia megapolitana sp. nov., moss-associated species with antifungal and plant-growth-promoting properties. Syst. Evol. Microbiol. 57, 2228-2235.   DOI
11 Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, and Arakawa M. 1992. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes, 1981) comb. nov. Microbiol. Immunol. 36, 1251-1275.   DOI
12 Yoon S, Ha S, Kwon S, Lim J, Kim Y, Seo H, and Chun J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613-1617.   DOI
13 Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791.   DOI
14 Abdel-Mawgoud AM, Abouwafa MM, and Hassouna NA. 2008. Optimization of surfactin production by Bacillus subtilis isolate BS5. Appl. Biochem. Biotechnol. 150, 305-325.   DOI
15 Cartwright DK, Chilton WS, and Benson DM. 1995. Pyrrolnitrin and phenazine production by Pseudomonas cepacia, strain 5.5B, a biocontrol agent of Rhizoctonia solani. Appl. Microbiol. Biotechnol. 43, 211-216.   DOI
16 Farh Mel A, Kim YJ, Van An H, Sukweenadhi J, Singh P, Huq MA, and Yang DC. 2015. Burkholderia ginsengiterrae sp. nov. and Burkholderia panaciterrae sp. nov., antagonistic bacteria against root rot pathogen Cylindrocarpon destructans, isolated from ginseng soil. Arch. Microbiol. 197, 439-447.   DOI
17 Fitch WM. 1971. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst. Zool. 20, 406-416.   DOI
18 Guerra-Santos LH, Kappeli O, and Fiechter A. 1986. Dependence of Pseudomonas aeruginosa continous culture biosurfactant production on nutritional and environmental factors. Appl. Microbiol. Biotechnol. 24, 443-448.
19 Homma Y, Sato Z, Hirayama F, Konno K, Shirahama H, and Suzui T. 1989. Production of antibiotics by Pseudomonas cepacia as an agent for biological control of soilborne plant pathogens. Soil Biol. Biochem. 21, 723-728.   DOI
20 Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95-98.
21 Jiao Y, Yoshihara T, Ishikuri S, Uchino H, and Ichihara A. 1996. Structural identification of cepaciamide A, a novel fungitoxic compound from Pseudomonas cepacia D-202. Tetrahedron Lett. 37, 1039-1042.   DOI
22 Kang Y, Carlson R, Tharpe W, and Schell MA. 1998. Characterization of genes involved in biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in biological control of Rhizoctonia solani. Appl. Environ. Microbiol. 64, 3939-3947.
23 Kirinuki T, Iwanuma K, Suzuki N, Fukami H, and Ueno T. 1977. Altericidins, a complex polypeptide antibiotic, produced by Pseudomonas sp. and their effect for the control of black spot of pear caused by Alternaria kikuchiana Tanaka. Sci. Rep. Fac. Agric.-Kobe Univ. (Japan) 12, 223-230.
24 Kumar S, Stecher G, and Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874.   DOI
25 Mahenthiralingam E, Song L, Sass A, White J, Wilmot C, Marchbank A, Boaisha O, Paine J, Knight D, and Challis GL. 2011. Enacyloxins are products of an unusual hybrid modular polyketide synthase encoded by a cryptic Burkholderia ambifaria genomic island. Chem. Biol. 18, 665-677.   DOI
26 Meyers E, Bisacchi GS, Dean L, Liu WC, Minassian B, Slusarchyk DS, Sykes RB, Tanaka SK, and Trejo W. 1987. Xylocandin: a new complex of antifungal peptides. I. Taxonomy, isolation and biological activity. J. Antibiot. 40, 1515-1519.   DOI
27 Moon SS, Kang PM, Park KS, and Kim CH. 1996. Plant growth promoting and fungicidal 4-quinolinones from Pseudomonas cepacia. Phytochemistry 42, 365-368.   DOI