• Title/Summary/Keyword: Feedback linearization control

Search Result 302, Processing Time 0.032 seconds

Design of Cartesian Feedback Loop Linearization Chip for UHF Band (UHF 대역용 Cartesian Feedback Loop 선형화 칩 설계)

  • Kang, Min-Soo;Chong, Young-Jun;Oh, Seung-Hyeub
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.5
    • /
    • pp.510-518
    • /
    • 2010
  • In this paper, the designed and implemented results of CFL linearization chip which can be used in mobile radio and TRS terminal of UHF band(380~910 MHz), using $0.6\;{\mu}m$ BiCMOS process based on Si, are shown. As gain control circuits for modifying transmit power are inserted not only in feedback path but also in forward path, the stability of CFL is maintained. And, DC-offset correction function of S/H structure, which is suitable for walkie-talkie PTT operation and is easily implemented, is realized. The performance test results of transmitter show that the regulation of FCC emission mask at PEP 3 W(34.8 dBm) is satisfied when the CQPSK modulated signal is fed and more than 30 dBc improvement of 3rd order IMD is achieved when two-tone signal is inputted.

Streamlined Rotors Mini Rotorcraft : Trajectory Generation and Tracking

  • Beji Lotfi;Abichou Azgal
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.87-99
    • /
    • 2005
  • We present in this paper the stabilization (tracking) with motion planning of the six independent configurations of a mini unmanned areal vehicle equipped with four streamlined rotors. Naturally, the yaw-dynamic can be stabilized without difficulties and independently of other motions. The remaining dynamics are linearly approximated around a small roll and pitch angles. It will be shown that the system presents a flat output that is likely to be useful in the motion generation problem. The tracking feedback controller is based on receding horizon point to point steering. The resulting controller involves the lift (collective) time derivative for what flatness and feedback linearization are used. Simulation tests are performed to progress in a region with approximatively ten-meter-buildings.

Tracking Controller Design Using Delayed Output Feedback For Systems With Stiff Nonlinearities (심한 비선형성을 갖는 시스템의 시간지연 출력궤환을 이용한 추종제어기의 설계)

  • 나승유
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.4
    • /
    • pp.342-349
    • /
    • 1991
  • In this paper, a method is presented for designing a tracking and disturbance rejecting controller for a nonlinear control system in which approximate linearization is not applicable due to a s stiff nonlinearity. Only the measurable variables are used for the controller synthesis. The system is augmented by a compensator at the output side for the tracking and disturbance rejection. An output delayed feedback controller is designed for the augmented system without nonlinearity. Then the feedback parameters are adjusted by describing function method to overcome the limit cycle due to the nonlinearity.

  • PDF

Dynamic Output-Feedback Controller Design for Stochastic Time-Delay Systems (스토캐스틱 시간지연 시스템을 위한 동적 출력궤환 제어기 설계)

  • Choi, Hyoun-Chul;Jung, Jin-Woo;Shim, Hyung-Bo;Seo, Jin-H.
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.462-463
    • /
    • 2008
  • This paper proposes a method for dynamic output-feedback controller design for stochastic time-delay systems. Based on recent results on time-delay systems control, a tractable and delay-dependent design condition is proposed, which provides a dynamic output-feedback controller to render the closed-loop stochastic time-delay systems to be asymptotically stable in the mean-square sense. The feasibility problem of the proposed condition is recast into a cone complementarity problem. An algorithm adopting cone complementarity linearization is presented to solve the resulting problem.

  • PDF

Implementation of Stable Adaptive Neural Networks for Feedback Linearization (피이드백 선형화를 위한 안정한 적응 신경회로망 구현)

  • Kim, Dong-Hun;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.58-61
    • /
    • 1996
  • For a class of single-input single-output continuous-time nonlinear systems, a multilayer neural network-based controller that feedback-linearizes the system is presented. Control action is used to achieve tracking performance for a state-feedback linearizable but unknown nonlinear system. The multilayer neural network(NN) is used to approximate nonlinear continuous function to any desired degree of accuracy. The weight-update rule of multilayer neural network is derived to satisfy Lyapunov stability. It is shown that all the signals in the closed-loop system are uniformly bounded. Initialization of the network weights is straightforward.

  • PDF

Control of Chaotic Nonlinear Systems Using Radial Basis Function Networks (방사 기저 함수 회로망을 이용한 혼돈 비선형 시스템의 제어)

  • Kim, Keun-Bum;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.569-571
    • /
    • 1998
  • In this paper, a new method of conrolling chaotic nonlinear systems is proposed. Firstly, the dynamics of a chaotic nonlinear system is separated into a linear part and a nonlinear part. Secondly, the nonlinear part is approximated using a radial basis function network (RBFN) and canceled from the controlled system. Then, the resulting system has only the linear part added with very weak nonlinearity. Finally, a simple linear state feedback control law is designed for the linear part. In the meanwhile, a theorem justifying this concept is presented and proved. Comparing with the feedback linearization, the proposed method can be applied regardless of the functional form of the controlled dynamics. The proposed method is applied by simulation to the Duffing system and the Lorenz system and satisfactory results are obtained.

  • PDF

Output-Feedback Input-Output Linearizing Controller for Nonlinear System Using Backward-Difference State Estimator (후방차분 상태 추정기를 이용한 비선형 계통의 입출력 궤환 선형화 제어기)

  • Kim, Seong-Hwan;Park, Jang-Hyun
    • Journal of IKEEE
    • /
    • v.9 no.1 s.16
    • /
    • pp.72-78
    • /
    • 2005
  • This paper describes the design of a robust output-feedback controller for a single-input single-output nonlinear dynamical system with a full relative degree. While all the previous research works on the output-feedback control are based on dynamic observers, a new state estimator which uses the past values of the measurable system output is proposed. We name it backward-difference state estimator since the derivatives of the output are estimated simply by backward difference of the present and past values of the output. The disturbance generated due to the error between the estimated and real state variables is compensated using an additional robustifying control law whose gain is tuned adaptively. Overall control system guarantees that the tracking error is asymptotically convergent and that all signals involved are uniformly bounded. Theoretical results are illustrated through a simulation example of inverted pendulum.

  • PDF

Exponential Stabilization of a Class of Underactuated Mechanical Systems using Dynamic Surface Control

  • Qaiser, Nadeem;Iqbal, Naeem;Hussain, Amir;Qaiser, Naeem
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.547-558
    • /
    • 2007
  • This paper proposes a simpler solution to the stabilization problem of a special class of nonlinear underactuated mechanical systems which includes widely studied benchmark systems like Inertia Wheel Pendulum, TORA and Acrobot. Complex internal dynamics and lack of exact feedback linearizibility of these systems makes design of control law a challenging task. Stabilization of these systems has been achieved using Energy Shaping and damping injection and Backstepping technique. Former results in hybrid or switching architectures that make stability analysis complicated whereas use of backstepping some times requires closed form explicit solutions of highly nonlinear equations resulting from partial feedback linearization. It also exhibits the phenomenon of explosions of terms resulting in a highly complicated control law. Exploiting recently introduced Dynamic Surface Control technique and using control Lyapunov function method, a novel nonlinear controller design is presented as a solution to these problems. The stability of the closed loop system is analyzed by exploiting its two-time scale nature and applying concepts from Singular Perturbation Theory. The design procedure is shown to be simpler and more intuitive than existing designs. Design has been applied to important benchmark systems belonging to the class demonstrating controller design simplicity. Advantages over conventional Energy Shaping and Backstepping controllers are analyzed theoretically and performance is verified using numerical simulations.

유연링크 로봇의 특이섭동 모델 최적 제어

  • 한기봉;이시복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.256-261
    • /
    • 1995
  • To improve the performance of the robots they must be built ever lighter, which will lead to flexibility of the links. The full order of the flexible link manipulator dynamic system does not allow the determination of a feedback linearization control as for flexible link manipulator regard low mode. In this paper, this drawback is overcome by LQG/LTR controller which is designed bya corrected reduced modle based on the singular perturbation method.

  • PDF

Control of Three-Phase Four-Wire Dynamic Voltage Restorers Using Feedback Linearization (궤환선형화 기법을 이용한 3상 4선식 동적전압보상기의 제어)

  • Jeong, Seon-Yeong;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.499-500
    • /
    • 2013
  • 본 논문은 계통전압의 순간전압 강하시 궤환선형화 기법을 이용한 3상 4선식 동적전압보상기의 제어 알고리즘을 제안한다. 궤환선형화 기법은 시스템의 비선형성을 제거하여 우수한 동특성을 얻을 수 있다. 제안된 제어기법은 시뮬레이션을 통하여 그 타당성이 입증된다.

  • PDF