• Title/Summary/Keyword: Feedback circuit

Search Result 494, Processing Time 0.032 seconds

An Efficient Bias Circuit of Discrete BJT Component for Hearing Aid (보청기를 위한 개별 BJT 소자의 효과적인 바이어스 회로)

  • 성광수;장형식;현유진
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.6
    • /
    • pp.16-23
    • /
    • 2003
  • In this paper, we propose an efficient bias circuit of discrete BJT component for hearing aid. The collector feedback bias circuit, widely used for the hearing aid, has a resistor for negative feedback. As the resistor affects AC and DC simultaneously, it is quite difficult to adjust amplifier gain without changing DC bias point. The previous bias circuit also has weak point to be oscillated by the positive feedback of power noise if gain of hearing aid is high. In the proposed circuit, we can reduce the two weak points of the previous circuit by adding a resistor to the collector feedback bias circuit between base and power supply which is $\beta$ times target than the collector resistor. Thus. we can change amplifier gain without changing DC bias point, and reduce power noise gain about 18.5% compare to that of tile previous circuit in the simulation.

A Study on the stability of boost power factor correction circuit with voltage feedback loop (전압제어루프를 고려한 부스트방식 역률개선회로의 안정도에 관한 연구)

  • Kim, Cherl-Jin;Jang, Jun-Young;Ji, Jae-Geun;Song, Yo-Chang
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.271-273
    • /
    • 2002
  • Switching power supply are widely used in many industrial field. Power factor correction(PFC) has become an increasingly necessary feature in new power supply designs. The power factor correction circuit using boost converter used in input of power source is studied in this paper. In a boost power factor correction circuit there are two feedback control loops, which are a current feedback loop and a voltage feedback loop. In this paper, it is analyzed regulation performance of output voltage and compensator to improve of transient response that presented at continuous conduction mode(CCM) of boost PFC circuit. The validity of designed boost PFC circuit is confirmed by simulation and experimental results.

  • PDF

Design of Variable Gain Low Noise Amplifier with Memory Effects Feedback for 5.2 GHz Band (5.2 GHz 대역에서 동작하는 기억 기능 특성을 갖는 궤환 회로를 이용한 변환 이득 저잡음 증폭기 설계)

  • Lee, Won-Tae;Jeong, Ji-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.1
    • /
    • pp.53-60
    • /
    • 2010
  • This paper presents a novel gain control system composed of a feedback circuit, Two stage Low Noise Amplifier (LNA) using 0.18 um CMOS technology for 5.2 GHz. The feedback circuit consists of the seven function blocks: peak detector, comparator, ADC, IVE(Initial Voltage Elimination) circuit, switch, storage, and current controller. We focus on detecting signal and designing storage circuit that store the previous state. The power consumption of the feedback circuit in the system can be reduced without sacrificing the gain by inserting the storage circuit. The adaptive front-end system with the feedback circuit exhibits 11.39~22.74 dB gain, and has excellent noise performance at high gain mode. Variable gain LNA consumes 5.68~6.75 mW from a 1.8 V supply voltage.

An Efficient Bias Circuit for Hearing Aid using Discrete BJT (개별 BJT를 이용한 보청기의 효과적인 바이어스 회로)

  • 장형식;현유진;성광수
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.231-234
    • /
    • 2002
  • In this paper, we propose an efficient bias circuit for hearing aid using discrete BJT. The collector feedback bias circuit, widely used for the hearing aid, has a resister for negative feedback. As the resistor affects AC and DC simultaneously, it is quite difficult to adjust amplifier gain without changing DC bias point. The previous bias circuit also has weak point to be oscillated by the positive feedback of power noise if gain of hearing aid is high. In the proposed circuit, we can reduce the two weak points of the previous circuit by adding a resistor which is ${\beta}$ times larger than collector resistor between base of BJT and power supply.

  • PDF

Characteristics of a High Power Factor Boost Converter with Continuous Current Mode Control

  • Kim, Cherl-Jin;Jang, Jun-Young
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.65-72
    • /
    • 2004
  • Switching power supply systems are widely used in many industrial fields. Power factor correction (PFC) circuits have a tendency to be applied in new power supply designs. The input active power factor correction (APFC) circuits can be implemented in either the two-stage approach or the single-stage approach. The two-stage approach can be classified into boost type PFC circuit and dc/dc converter. The power factor correction circuit with a boost converter used as an input power source is studied in this paper. In a boost power factor correction circuit there are two feedback control loops, which are a current feedback loop and a voltage feedback loop. In this paper, the regulation performance of output voltage and compensator to improve the transient response presented at the continuous conduction mode (CCM) of the boost PFC circuit is analyzed. The validity of designed boost PFC circuit is confirmed by MATLAB simulation and experimental results.

New negative capacitance front-end for bioimpedance measurements (생체 임피던스 측정을 위한 새로운 네가티브 커패시턴스 프론트 엔드)

  • 권석영;김영필;황인덕
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2753-2756
    • /
    • 2003
  • A convenient, tunable loop-gain negative impedance circuit that increases input impedance of a front-end in a bioimpedance measurement has been proposed. Since the proposed circuit comprises wide-band operational amplifiers, selecting operational amplifiers is easy, while an operational amplifier of proper bandwidth should be chosen to use conventional circuit. Also, since loop-gain can be controlled by a feedback resistor connected serially with a feedback capacitor, loop-gain is tunable with a potentiometer. The input impedance of the proposed circuit is two times larger than that of the conventional circuit. Furthermore, closed loop phase response of the proposed circuit is better than that of the conventional circuit or without a negative capacitance circuit. The implemeted, proposed circuit showed stable operation and a zero input capacitance.

  • PDF

Visible Light Identification System Using Optoelectronic Feedback of A Lighting LED (조명용 LED의 광전궤환을 이용한 가시광 무선인식장치)

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.193-198
    • /
    • 2011
  • In this paper, we used optoelectronic feedback to generate the carrier frequency for the ASK modulation of a lighting LED. A solar cell was used for photo-detector in the feedback circuit, and the LED light was ASK modulated by controlling the ON/OFF state of the switch that is installed in the feedback loop. The oscillation frequency of the optoelectronic feedback loop was about 50 kHz and the data rate of the ASK modulation was 9.6 kbps. In experiments, the optoelectronic feedback circuit was used for the ASK modulation of a lighting LED in the transponder of a visible light identification system, and data exchange between the transponder and the reader was successfully carried out.

Nano-scale high-accuracy displacement measurement using the Michelson laser interferometer controlled with a feedback circuit (되먹임 회로로 제어하는 Michelson 레이저 간섭계를 이용한 Nano-scale 미세변위 측정)

  • Ahn, Seong-Joon;Oh, Tae-Sik;Ahn, Seung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1007-1012
    • /
    • 2007
  • A novel Michelson interferometer controlled with a feedback circuit(MIFC) has been developed and its performance has been evaluated. This new interferometer can measure the displacement of the sample by directly reading the feedback bias applied to the PZT whose piezoelectric characteristic is known. The experimental result showed that the step height the silicon membrane measured by using MIFC was actually same with the value measured by SEM, which confirms that MICS is an easy and accurate method for the nano-scale displacement measurement.

  • PDF

Characteristics of Boost Active Power Factor Correction Converter (부스트 능동 역률개선 컨버터의 특성)

  • Jang, Jun-Young;Lin, Chi-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1152-1159
    • /
    • 2015
  • Switching power supply systems are widely used in many industrial fields. Power factor correction (PFC) circuits have a tendency to be applied in new power supply designs. The PFC circuit with a boost converter using an input power source is studied in this paper. In a boost PFC circuit, there are two feedback control loops: a current feedback loop and a voltage feedback loop. In this paper, the regulation performance gained by using the output voltage and compensator to improve the transient response presented at the continuous conduction mode (CCM) of the boost PFC circuit is analyzed. The validity of the designed boost PFC circuit is confirmed by both MATLAB simulation and experimental results.

Feedback Loudness Control Circuit (피이드백 라우드니스 제어회로)

  • Kim, Ju-Hong;Sim, Gwang-Bo;Eom, Gi-Hwan
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.6
    • /
    • pp.58-61
    • /
    • 1983
  • This is a Loudness Control Circuit in an audio amplifier controlled by feedback type volume control variable resistors. This circuit consists of Bridged Twin T network and a ordinary variable resistor. The variably resistor acts not only as a volume control by varying feedback qupntity, but also as Loudness Control through the characteristics variation by Sound Level. This new Loudness Control Circuit showed ideal compensation characteristics that agree computer simulation and measured datas.

  • PDF