• Title/Summary/Keyword: Feed organism

Search Result 52, Processing Time 0.026 seconds

The Effects of Probiotic Lactobacillus reuteri Pg4 Strain on Intestinal Characteristics and Performance in Broilers

  • Yu, B.;Liu, J.R.;Chiou, M.Y.;Hsu, Y.R.;Chiou, W.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.8
    • /
    • pp.1243-1251
    • /
    • 2007
  • This study was conducted to evaluate the feasibility of using L. reuteri Pg4, a strain isolated from the gastrointestinal (GI) tract of healthy broilers, as a probiotic. In preliminary in vitro studies the Pg4 strain was proven capable of tolerating acid and bile salts, inhibiting pathogenic bacteria and can adhere to intestinal epithelial cells. The probiotic properties were then evaluated on the basis of the broiler's growth performance, intestinal microbial population and cecal volatile fatty acid and lactic acid concentrations under conventional feeding. Dietary supplementation of dried L. reuteri Pg4 decreased significantly feed intake in grower chickens and improved significantly the feed conversion by 5% in a 0-6 weeks feeding period compared with the control group. The Lactobacillus counts in the crop, ileum, and cecum of the probiotic group were higher than in the control group. The L. reuteri Pg4 strain was traceable in the GI tract of probiotic supplemented chicks and showed capability of survival in the intestine for a protracted period. The probiotic group had a higher lactic acid concentration and lower pH value in the cecum than the control chicks. Probiotic supplement also affected the histology of the intestinal mucosa of chicks. The present findings demonstrated that L. reuteri Pg4 possesses probiotic characteristics and it is suggested, therefore, that the organism could be a candidate for a new probiotic strain.

Isolation, In vitro Antibacterial Activity, Bacterial Sensitivity and Plasmid Profile of Lactobacilli

  • Lonkar, P.;Harne, S.D.;Kalorey, D.R.;Kurkure, N.V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.9
    • /
    • pp.1336-1342
    • /
    • 2005
  • The present research work was conducted to evaluate the beneficial effects as well as the safety aspects of lactobacilli as probiotic. Lactobacilli were isolated from poultry faecal samples, feed samples and from some known preparations procured from poultry feed manufacturers. L. acidophilus and L. sporogenes were tested for the antibacterial activity against four poultry pathogens viz. Escherichia coli, Salmonella spp., Proteus spp. and Pseudomonas aeruginosa. Cell free supernatant (CFS) of L. acidophilus exhibited significantly higher antibacterial activity against Salmonella spp. at original pH (4.50${\pm}$0.02). At the adjusted pH (6.50${\pm}$0.02) significantly higher antibacterial activity was recorded against indicator organism except for P. aeruginosa. Likewise, L. sporogenes exhibited similar antibacterial activity at original as well as adjusted pH except for E. coli. Antibacterial activity against E. coli was significantly higher at adjusted pH than at original pH of CFS. The competitive exclusion of E. coli by lactobacilli over the intestinal epithelial cells (IEC) was checked. L. acidophilus strain I, which was of poultry origin, exhibited maximum attachment over IEC as compared to other three strains of non-poultry origin viz. L. acidophilus strain II, L. sporogenes strain I and II. Overall, L. acidophilus exhibited higher competitive exclusion as compared to L. sporogenes. All the lactobacilli of poultry origin were most sensitive to penicillin G, amoxycillin, ampicillin and chloramphenicol, least sensitive to sulphamethizole, ciprofloxacin, neomycin, norfloxacin and pefloxacin and resistant to metronidazole and nalidixic acid. The isolates from probiotic preparations were most sensitive to ampicillin, amoxycillin and tetracycline, least sensitive to sulphamethizole, norfloxacin, neomycin and ceftriazone and resistant to nalidixic acid and metronidazole. Eight of the multiple drug resistant lactobacilli isolates were studied for the presence of plasmids. Plasmids could be extracted from six isolates of lactobacilli. These plasmids could be responsible for bacteriocin production or for antibiotic resistance of the strains. The lactobacilli need further studies regarding their safety for use in the probiotic preparations.

Examination of Bioconcentration of a New Algicide, Thiazolidinedione Derivative (TD49) to Marine Organisms (신규 살조제 Thiazolidinedione 유도체 (TD49)의 해양생물에 대한 생물 농축도 조사)

  • Shin, Jun-Jae;Kim, Si-Wouk;Cho, Hoon;Kim, Seong-Jun
    • KSBB Journal
    • /
    • v.27 no.2
    • /
    • pp.91-96
    • /
    • 2012
  • In this study, a newly synthesized thiazolidinedione derivative, TD49 with a highly selective algicide to red tide, was examined in order to evaluate the bioconcentration on aquatic organisms of coast. BAF (accumulation of TD49 by aquatic food chain) and BCF (accumulation of TD49 by sea water) were examined employing the shrimp (Fenneropenaeus chinensis) as the feed organism, and the olive flounder Paralichthys olivaceus as a consumer in marine ecosystem. Bioconcentration degree in sea water showed that the order in P. olivaceus was viscera > gill > muscle. The average BCF values of TD49 were 67.70, 63.32 and 20.25 at viscera, gill and muscle, respectively. Bioaccumulation degree using feed showed that the order in the organs of P. olivaceus was viscera > gill > muscle. The average BAF values of TD49 were 175.89, 114.88 and 32.59 at viscera, gill and muscle, respectively. When compared with two results, the accumulation by the food and water was higher than that by water. After the elimination experiment in sea water, the TD49 concentration was 2.81 nmole/g in the viscera and were not found in the gill and the muscle. More than 50% of the accumulated TD49 were eliminated from viscera in 7 days and all the accumulated TD49 were eliminated from gill and muscle in 7 days. On the other hand, the octanol/water partition coefficient (log $K_{ow}$) was measured to be 3.66 and experimental BCF of this study was 67.7.

Effect of insect-resistant genetically engineered (Bt-T) rice and conventional cultivars on the brown planthopper (Nilaparvata lugens Stål)

  • Sung-Dug, Oh;Eun Ji, Bae;Kijong, Lee;Soo-Yun, Park;Myung-Ho, Lim;Doh-Won, Yun;Seong-Kon, Lee;Gang-Seob, Lee;Soon Ki, Park;Jae Kwang, Kim;Sang Jae, Suh
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.511-520
    • /
    • 2022
  • Insect-resistant transgenic rice (Bt-T) expresses a toxic protein (mcry1Ac1) derived from the soil bacterium Bacillus thuringiensis found in the rice cultivar Dongjin with an insecticidal property against rice leaf roller (Cnaphalocrocis medinalis). In this study, to investigate the impact of Bt-T on non-target organisms, the feed and oviposition preferences and biological parameters of brown planthopper (Nilaparvata lugens Stål) were comparatively analyzed in four rice cultivars: Dongjin (parent variety), Ilmi (reference cultivar), Chinnong (brown planthopper resistant cultivar) and Bt-T. In the Bt-T and Dongjin cultivars, the feed preferences were 32.4 ± 8.3 and 34.1 ± 6.8%, and the oviposition preferences were 32.5 ± 5.1 and 30.0 ± 5.3% respectively, and there was no statistical significance between these rices. Additionally, in the Bt-T and Dongjin cultivars, the total lifespans from egg to adult were 39.5 ± 6.9 and 40.0 ± 5.8 days, and the weights of adult females were 1.78 ± 0.14 and 1.72 ± 0.16 mg, respectively. Therefore, there was no statistical difference in the biological parameters between these two varieties. Overall, the results indicate that the insect-resistant transgenic rice (Bt-T) did not negatively affect the reproduction and life cycle of brown planthopper, a non-target organism.

Estimating Farmers' Willingness to Cultivate Genetically Modified Rice and Grass for Feed in Korea (농업인의 사료용 유전자변형 작물 재배 의사 추정)

  • Kim, Seung Gyu;Ryu, Jin;Jung, Jae-Won;Sung, Myung-Hwan;Kim, Tae-Kyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.4
    • /
    • pp.303-308
    • /
    • 2015
  • Cultivating genetically modified (GM) crops is believed to be a practical solution to meet the increasing food demand, but GM crops are not legal in Korea mainly due to food safety issues. Even though the general public might not be ready to consume GM food, GM crops are imported and consumed as food and feed. To analyze farmers's willingness to grow GM crops for feed, a survey was conducted among crop farmers and 640 valid responses were collected by mail. In the questionnaire, the farmers were asked to select either 'yes' or 'no' if they were willing or not willing to cultivate GM rice and GM grass, respectively, under the given hypothetical income increase rate (i.e., 10%, 20%, 30%, 40%, 50%, 60%, or 70%). Logit regression was used to estimate the two dichotomous choices by explanatory variables including hypothetical income increase rate. The results show that farmers are willing to cultivate GM rice and grass when their income is expected to increase by 47% and 43%, respectively.

Avian Gut Immune System and Local Responses to Eimerial Parasites (조류의 장내 면역체계와 콕시듐(Eimeria)기생충들에 대한 국소면역 반응)

  • Lillehoj, H.S.
    • Korean Journal of Poultry Science
    • /
    • v.26 no.2
    • /
    • pp.131-144
    • /
    • 1999
  • Coccidiosis, an intestinal infection caused by intracellular protozoan parasites belonging to several different species of Eimeria seriously impairs the growth and feed utilization of livestock and poultry. Due to complex life cycle of organism and intricate host immune responses to Elmeria, coccidia vaccine development has been difficult. Understanding of basic imunobiology of pertinent host-parasite interactions is necessary for the development of novel control strategy. Although chickens infected with Eimeria spp. produce parasite-specific antibodies in both the circulation and mucosal secretions, antibody mediated responses play a minor role in protection gainst coccidiosis. Rather, increasing evidence show that cell-mediated immunity plays a major role in resistance to coccidiosis. T-lymphocytes appear to respond to coccidiosis both through cytokine production and a direct cytotoxic attack on infected cells. The exact mechanisms by which T-cells eliminate the parasites, however, remain to be investigated. Since it is crucial to understand the intestinal immune system in order to develop an immunological control strategy against any intestinal immune system in order to develop an immunological control strategy against any intestinal diseases, this presentation will summarize our current understanding of the avian intestinal immune system and mucosal immune responses to Eimeria, to provide a conceptual overview of the complex molecular and cellular events involved in intestinal immune responses to enteric pathogens.

  • PDF

Expression of Nutritionally Well-balanced Protein, AmA1, in Saccharomyces cerevisiae

  • Kim, Tae-Geum;Kim, Ju;Kim, Dae-Hyuk;Yang, Moon-Sik
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.3
    • /
    • pp.173-178
    • /
    • 2001
  • Food yeast, Saccharomyces cerevisiae, is a safe organism with a long history of use for the production of biomass rich in high quality proteins and vitamins. AmA1, a seed storage albumin from Amaranthus hypochondriacus, has a well-balanced amino acid composition and high levels of essential amino acids and offers the possibility of further improving food animal feed additives. In order to find an effective means of expressing AmA1 in yeast, the gene was cloned into an episomal shuttle vector. Four different promoters were tested: the glyceraldehyde-3-phosphate dehydrogenase promoter, galactose dehydrogenase 10 promoter, alcohol dehydrogenase II promoter, and a hybrid ADH2-GPD promoter. The recombinant AmA1 genes were then introduced into the yeast Saccharomyces cerevisiae 2805. Northern and Western blot analyses of the yeast under appropriate conditions revealed that AmA1 was expressed by all four promoters at varying levels. An enzyme-linked immunosorbent assay demonstrated that the amount of AmA1 protein in the recombinant yeast was 1.3-4.3% of the total soluble proteins. The highest expression level was obtained from the hybrid ADH2-GPD promoter.

  • PDF

Characterizations of Denitrifying Polyphosphate-accumulating Bacterium Paracoccus sp. Strain YKP-9

  • Lee, Han-Woong;Park, Yong-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1958-1965
    • /
    • 2008
  • A denitrifying polyphosphate-accumulating bacterium (YKP-9) was isolated from activated sludge of a 5-stage biological nutrient removal process with step feed system. This organism was a Gram-negative, coccus-shaped, facultative aerobic chemoorganotroph. It had a respiratory type of metabolism with oxygen, nitrate, and nitrite as terminal electron acceptors. The 16S rRNA gene sequence of strain YKP-9 was most similar to the 16S rRNA gene sequence of Paracoccus sp. OL18 (AY312056) (similarity level, 97%). Denitrifying polyphosphate accumulation by strain YKP-9 was examined under anaerobic-anoxic and anaerobic-oxic batch conditions. It was able to use external carbon sources for polyhydroxyalkanoates(PHA) synthesis and to release phosphate under anaerobic condition. It accumulated polyphosphate and grew a little on energy provided by external carbon sources under anoxic condition, but did neither accumulate polyphosphate nor grow in the absence of external carbon sources under anoxic condition. Cells with intracellular PHA cannot accumulate polyphosphate in the absence of external carbon sources under anoxic condition. Under oxic condition, it grew but could not accumulate polyphosphate with external carbon sources. Based on the results from this study, strain YKP-9 is a new-type denitrifying polyphosphate-accumulating bacterium that accumulates polyphosphate only under anoxic condition, with nitrate and nitrite as the electron acceptors in the presence of external carbon sources.

Current status and future of gene engineering in livestock

  • Dong-Hyeok Kwon;Gyeong-Min Gim;Soo-Young Yum;Goo Jang
    • BMB Reports
    • /
    • v.57 no.1
    • /
    • pp.50-59
    • /
    • 2024
  • The application of gene engineering in livestock is necessary for various reasons, such as increasing productivity and producing disease resistance and biomedicine models. Overall, gene engineering provides benefits to the agricultural and research aspects, and humans. In particular, productivity can be increased by producing livestock with enhanced growth and improved feed conversion efficiency. In addition, the application of the disease resistance models prevents the spread of infectious diseases, which reduces the need for treatment, such as the use of antibiotics; consequently, it promotes the overall health of the herd and reduces unexpected economic losses. The application of biomedicine could be a valuable tool for understanding specific livestock diseases and improving human welfare through the development and testing of new vaccines, research on human physiology, such as human metabolism or immune response, and research and development of xenotransplantation models. Gene engineering technology has been evolving, from random, time-consuming, and laborious methods to specific, time-saving, convenient, and stable methods. This paper reviews the overall trend of genetic engineering technologies development and their application for efficient production of genetically engineered livestock, and provides examples of technologies approved by the United States (US) Food and Drug Administration (FDA) for application in humans.

Safety Test of Brown Rice Expressing Arabidopsis Calcium Transporter by Feeding Trial in Mice (애기장대 칼슘수송체를 발현하는 형질전환 현미의 생쥐 식이를 통한 안전성 평가)

  • Kim, Kyung-Min;Kim, Chang-Kil;Kim, Byung-Oh
    • Journal of Life Science
    • /
    • v.18 no.10
    • /
    • pp.1390-1394
    • /
    • 2008
  • Previously, we found that the transgenic rice plants over-expressing the Arabidopsis $H^+/Ca^{2+}$ antiporter CAX 1 (accession no. U57411) gene accumulated 2.7 to 7.5-fold more calcium in the T3 rice grains as compared to those of control. To examine physiological safety of the $T_3$ rice grains, the effect of the $T_3$ brown rice on change in levels of body weight and white blood cells was compared with that of the control Ilpum brown rice by feeding trial in mice. During the feeding trial for one month, there was no significant difference between two mice groups, which were fed by the $T_3$ brown rice or Ilpum brown rice. There were no detectable differences in their effects on immune functions including plaque-forming unit, peritoneal macrophage number, and NK-cell activity. In addition, biochemical analysis of the blood failed to exhibit any difference between two mice groups. Together, these results suggested that the $T_3$ brown rice, which was produced from a genetically modified organism (GMO), might be safe and possess a potential to be applicable as calcium-fortified feed or food. Long-term safety of the $T_3$ brown rice, however, remains to be elucidated.