Browse > Article
http://dx.doi.org/10.4014/jmb.0800.162

Characterizations of Denitrifying Polyphosphate-accumulating Bacterium Paracoccus sp. Strain YKP-9  

Lee, Han-Woong (Department of Civil and Environmental Engineering, Louisiana State University)
Park, Yong-Keun (School of Life Sciences and Biotechnology, Korea University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.12, 2008 , pp. 1958-1965 More about this Journal
Abstract
A denitrifying polyphosphate-accumulating bacterium (YKP-9) was isolated from activated sludge of a 5-stage biological nutrient removal process with step feed system. This organism was a Gram-negative, coccus-shaped, facultative aerobic chemoorganotroph. It had a respiratory type of metabolism with oxygen, nitrate, and nitrite as terminal electron acceptors. The 16S rRNA gene sequence of strain YKP-9 was most similar to the 16S rRNA gene sequence of Paracoccus sp. OL18 (AY312056) (similarity level, 97%). Denitrifying polyphosphate accumulation by strain YKP-9 was examined under anaerobic-anoxic and anaerobic-oxic batch conditions. It was able to use external carbon sources for polyhydroxyalkanoates(PHA) synthesis and to release phosphate under anaerobic condition. It accumulated polyphosphate and grew a little on energy provided by external carbon sources under anoxic condition, but did neither accumulate polyphosphate nor grow in the absence of external carbon sources under anoxic condition. Cells with intracellular PHA cannot accumulate polyphosphate in the absence of external carbon sources under anoxic condition. Under oxic condition, it grew but could not accumulate polyphosphate with external carbon sources. Based on the results from this study, strain YKP-9 is a new-type denitrifying polyphosphate-accumulating bacterium that accumulates polyphosphate only under anoxic condition, with nitrate and nitrite as the electron acceptors in the presence of external carbon sources.
Keywords
Denitrifying polyphosphate-accumulating bacterium; PHA synthesis; polyphosphate granule;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Ault-Riché, D., C. D. Fraley, C. M. Tzeng, and A. Kornberg. 1998. A novel assay reveals multiple pathways regulating stressinduced accumulations of inorganic polyphosphate in Escherichia coli. J. Bacteriol. 180: 1841-1847
2 Barker, P. S. and P. L. Dold. 1996. Denitrification behavior in biological excess phosphorus removal activated sludge system. Water. Res. 30: 769-780   DOI   ScienceOn
3 Iwema, A. and A. Meunier. 1985. Influence of nitrate on acetic acid induced biological phosphorus removal. Water Sci. Technol. 17: 289-294
4 Kong, Y. H., L. J. Nielsen, and H. P. Nielsen. 2005. Identity and ecophysiology of uncultured actinobacterial polyphosphateaccumulating organisms in full-scale enhanced biological phosphorus removal plants. Appl. Environ. Microbiol. 71: 4076-4085   DOI   ScienceOn
5 Kuba, T., G. Smolders, M. C. M. van Loosdrecht, and J. J. Heijnen. 1993. Biological phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor. Water Sci. Technol. 27: 241-252
6 Lee, S. H., J. H. Ko, J. R. Kim, Y. J. Kim, J. J. Lee, C. W. Kim, and T. H. Lee. 2006. Identification of the adverse effect of nitrate on the phosphate release rate and improvement of EBPR process models. Water Sci. Technol. 53: 115-123
7 Liu, W.-T., A. T. Nielsen, J. H. Wu, C. S. Tsai, Y. Matsuo, and S. Molin. 2001. In situ identification of polyphosphate- and polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal process. Environ. Microbiol. 3: 110-122   DOI   ScienceOn
8 Maidak, B. L., J. R. Cole, T. G. Lilburn, C. T. J. Parker, P. R. Saxman, R. J. Farris, et al. 2001. The RDP-II (Ribosomal Database Project). Nucleic Acids Res. 29: 173-174   DOI   ScienceOn
9 Streichan, M., J. R. Golecki, and G. Schon. 1990. Polyphosphateaccumulating bacteria from sewage plant with different processes of biological phosphorus removal. FEMS Microbiol. Ecol. 73: 113-124   DOI   ScienceOn
10 Sudiana, I. M., T. Mino, H. Satoh, and T. Matsuo. 1998. Morphology, in situ characterization with rRNA targeted probes and respiratory quinone profiles of enhanced biological phosphorus removal sludge. Water Sci. Technol. 38: 69-76
11 APHA. 1995. Standard Methods for Examination of Water and Wastewater, 19th Ed. American Public Health Association/American Water Work Association/Water Environment Federation, Washington, DC, U.S.A.
12 Altschul, S. F., T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402   DOI   ScienceOn
13 Liu, W.-T., K. D. Linning, K. Nakamura, T. Mino, T. Matsuo, and L. Forney. 2000. Microbial community changes in biological phosphate-removal systems on altered sludge phosphate content. Microbiology 146: 1099-1107   DOI
14 Leaf, T. A., M. S. Peterson, S. K. Stoup, D. Somers, and F. Srienc. 1996. Saccharomyces cerevisiae expressing bacterial polyhydroxybutyrate synthase produces poly-3-hydroxybutyrate. Microbiology. 142: 1169-1180   DOI   ScienceOn
15 Lin, C.-K., Y. Katayama, M. Hosomi, A. Murakami, and M. Okada. 2000. The relationship between isoprenoid quinone and phosphorus removal activity. Water Res. 34: 3607-3613   DOI   ScienceOn
16 Hallin, S. and P. E. Lindgren. 1999. PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Appl. Environ. Microbiol. 65: 1652-1657
17 Jorgensen, S. J. and A. S. L. Pauli. 1995. Polyphosphate accumulation among denitrifying bacteria in activated sludge. Anaerobe 1: 161-168   DOI   ScienceOn
18 Merzouki, M., J. P. Delgenes, N. Bernet, R. Moletta, and M. Benlemlih. 1999. Polyphosphate-accumulating and denitrifying bacteria isolated from anaerobic-anoxic and anaerobic-aerobic sequencing batch reactors. Curr. Microbiol. 38: 9-17   DOI   ScienceOn
19 Toerien, D. F., A. Gerber, L. H. Lotter, and T. E. Cloete. 1990. Enhanced biological phosphorus removal in activated sludge systems, pp. 173-219. In K. C. Marshall (ed.), Advances in Microbial Ecology, Vol. 11. Plenum Press, New York, NY
20 Kuba, T., G. Smolders, M. C. M. van Loosdrecht, and J. J. Heijnen. 1997. A metabolic model for biological phosphorus removal by denitrifying organisms. Biotechnol. Bioeng. 52: 685-695   DOI   ScienceOn
21 Hiraishi, A., Y. Ueda, and J. Ishihara. 1998. Quinone profiling of bacterial communities in natural and synthetic sewage activated sludge for enhanced phosphate removal. Appl. Environ. Microbiol. 64: 992-998
22 Auling, G., F. Pilz, H. J. Busse, M. Karrasch, M. Streichan, and G. Schon. 1991. Analysis of the polyphosphate-accumulating microflora in phosphorus-eliminating, anaerobic-aerobic activated sludge systems by using diaminopropane as a biomarker for rapid estimation of Acinetobacter spp. Appl. Environ. Microbiol. 57: 3685-3692
23 Comeau, Y., K. J. Hall, R. E. W. Hancock, and W. K. Oldham. 1986. Biochemical model for enhanced biological phosphorus removal. Water. Res 20: 1511-1521   DOI   ScienceOn
24 Mino, T., W. T. Liu, F. Kurisu, and T. Matsuo. 1995. Modeling glycogen storage and denitrification capability of microorganisms in enhanced biological phosphate removal processes. Water Sci. Technol. 31: 25-34
25 Mino, T., M. C. M. van Loosdrecht, and J. J. Heijnen. 1998. Microbiology and biochemistry of the enhanced biological phosphate removal processes. Water Res. 32: 3193-3207   DOI   ScienceOn
26 Barak, Y. and J. van Rijn. 2000. Atypical polyphosphate accumulation by the denitrifying bacterium Paracoccus denitrificans. Appl. Environ. Microbiol. 66: 1209-1212   DOI   ScienceOn
27 Lee, H. W., S. Y. Lee, J. O. Lee, H. G. Kim, J. B. Park, E. S. Choi, D. H. Park, and Y. K. Park. 2003. The microbial community analysis of 5-stage BNR process with step feed system. Water Sci. Technol. 48: 135-141
28 Pillay, D., B. Pillay, A. O. Olaniran, W. H. L. Stafford, and D. A. Cowan. 2007. Microbial community profiling in cis- and trans-dichloroethene enrichment systems using denaturing gradient gel electrophoresis. J. Microbiol. Biotechnol. 17: 560-570   과학기술학회마을
29 Cho S. J., K. M. Cho, E. C. Shin, W. J. Lim, S. Y. Hong, B. R. ChoiI, et al. 2006. 16S rDNA analysis of bacterial diversity in three fractions of cow rumen. J. Microbiol. Biotechnol. 16: 92-101   과학기술학회마을
30 Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT (http://www.mbio.ncsu.edu/BioEdit/bioedit.html). Nucleic Acids Symp. Ser. 41: 95-98
31 Brosius, J., J. L. Palmer, H. P. Kennedy, and H. F. Noller. 1978. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75: 4801-4805   DOI   ScienceOn
32 Ju, D.-H., M.-K. Choi, J.-H. Ahn, M.-H. Kim, J.-C. Cho, T. Kim, T. Kim, and J.-O. Ka. 2007. Molecular and ecological analyses of microbial community structures in biofilms of a fullscale aerated up-flow biobead process. J. Microbiol. Biotechnol. 17: 253-261   과학기술학회마을
33 Gerhardt, P., R. G. E. Murray, R. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg, and G. B. Phillips. 1981. Manual of Methods for General Bacteriology. American Society for Microbiology, Washington, DC