• Title/Summary/Keyword: Fe precursors

Search Result 89, Processing Time 0.02 seconds

Electrochemical Performance on the H3BO3 Treated Soft Carbon modified from PFO as Anode Material (음극소재로 PFO에서 개질된 붕산처리 소프트 카본의 전기화학적 성능)

  • Lee, Ho Yong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.746-752
    • /
    • 2016
  • In this study, soft carbon was prepared by carbonization of carbon precursor (pitch) obtained from PFO (pyrolysis fuel oil) heat treatment. Three carbon precursors prepared by the thermal reaction were 3903 (at $390^{\circ}C$ for 3 h), 4001 (at $400^{\circ}C$ for 1 h) and 4002 (at $400^{\circ}C$ for 2 h). After the prepared soft carbon was ground to a particle size of $25{\sim}35^{\circ}C$, the soft carbon was synthesised by the chemical treatment with boric acid ($H_3BO_3$). The prepared soft carbon were analysed by XRD, FE-SEM and XPS. Also, the electrochemical performances of soft carbon were investigated by constant current charge/discharge test, cyclic voltammetry and impedance tests in the electrolyte of $LiPF_6$ dissolved inorganic solvents (EC:DMC=1:1 vol%+VC 3 wt%). The coin cell using soft carbon of $25{\sim}35^{\circ}C$ with 3903 soft carbon ($H_3BO_3$/Pitch=3:100 in weight) has better initial capacity and efficiency (330 mAh/g, 82%) than those of other coin cells. Also, it was found that the retention rate capability of 2C/0.1C was 90% after 30 cycles.

Electrochemical Characteristics of PFO pitch Anode prepared by Chemical Activation for Lithium Ion Battery (리튬이온전지용 화학적 활성화로 제조된 석유계 피치 음극소재의 전기화학적 특성)

  • Hwang, Jin Ung;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.307-312
    • /
    • 2017
  • In this study, the electrochemical performance of surface modified carbon using the PFO (pyrolyzed fuel oil) was investigated by chemical activation with KOH and $K_2CO_3$. PFO was heat treated at $390{\sim}400^{\circ}C$ for 1~3h to prepared the pitch. Three carbon precursors (pitch) prepared by the thermal reaction were 3903 (at $390^{\circ}C$ for 3h), 4001(at $400^{\circ}C$ for 1h) and 4002 (at $400^{\circ}C$ for 2h). Also, the effect of chemical activation catalysts and mixing time on the development of porosity during carbonization was investigated. The prepared carbon was analyzed by BET and FE-SEM. It was shown that chemical activation with KOH could be successfully used to develop carbon with specific surface area ($3.12m^2/g$) and mean pore size (22 nm). The electrochemical characteristics of modified carbon as the anode were investigated by constant current charge/discharge, cyclic voltammetry and electrochemical impedance tests. The coin cell using pitch (4002) modified by KOH has better initial capacity (318 mAh/g) than that of other pitch coin cells. Also, this prepared carbon anode appeared a high initial efficiency of 80% and the retention rate capability of 2C/0.1 C was 92%. It is found that modified carbon anode showed improved cycling and rate capacity performance.

Synthesis of Tungsten Doped Vanadium Dioxide and Its Thermochromic Property Studies (텅스텐이 도핑된 바나듐 산화물의 합성 및 열전이 특성 연구)

  • Hwang, Kyung-Jun;Jo, Cho Won;Yoo, Jung Whan
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.44-48
    • /
    • 2013
  • In this work, we have prepared tungsten doped vanadium oxide ($W-VO_2$) particles with a low phase transition temperature. $W-VO_2$ particles were synthesized via thermolysis method using vanadyl (IV) sulfate and ammonium bicarbonate as precursors. The structure and thermochromic property of synthesized $W-VO_2$ particles were investigated by FE-SEM, EDS, XRD, XPS, and DSC analysis. The prepared $W-VO_2$ showed a nearly platy morphology, which indicates that the tungsten was successfully doped in the crystal lattices of $VO_2$. $W-VO_2$ nanoparticles with the size of 60 nm exhibited a monoclinic crystal structure and its chemical composition and surface state were also likely to be close to that of $VO_2$. In addition, the phase transition temperature of $W-VO_2$ was $38.5^{\circ}C$, which was approximately $29.2^{\circ}C$ lower than that of pure $VO_2$ ($67.7^{\circ}C$), indicating that the prepared sample had a good reversible thermochromic stability.

Comparative Genomic and Genetic Functional Analysis of Industrial L-Leucine- and L-Valine-Producing Corynebacterium glutamicum Strains

  • Ma, Yuechao;Chen, Qixin;Cui, Yi;Du, Lihong;Shi, Tuo;Xu, Qingyang;Ma, Qian;Xie, Xixian;Chen, Ning
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1916-1927
    • /
    • 2018
  • Corynebacterium glutamicum is an excellent platform for the production of amino acids, and is widely used in the fermentation industry. Most industrial strains are traditionally obtained by repeated processes of random mutation and selection, but the genotype of these strains is often unclear owing to the absence of genomic information. As such, it is difficult to improve the growth and amino acid production of these strains via metabolic engineering. In this study, we generated a complete genome map of an industrial L-valine-producing strain, C. glutamicum XV. In order to establish the relationship between genotypes and physiological characteristics, a comparative genomic analysis was performed to explore the core genome, structural variations, and gene mutations referring to an industrial L-leucine-producing strain, C. glutamicum CP, and the widely used C. glutamicum ATCC 13032. The results indicate that a 36,349 bp repeat sequence in the CP genome contained an additional copy each of lrp and brnFE genes, which benefited the export of L-leucine. However, in XV, the kgd and panB genes were disrupted by nucleotide insertion, which increase the availability of precursors to synthesize L-valine. Moreover, the specific amino acid substitutions in key enzymes increased their activities. Additionally, a novel strategy is proposed to remodel central carbon metabolism and reduce pyruvate consumption without having a negative impact on cell growth by introducing the CP-derived mutant $H^+$/citrate symporter. These results further our understanding regarding the metabolic networks in these strains and help to elucidate the influence of different genotypes on these processes.

Hydrothermal Synthesis and Mechanical Characterization of ZrO2 by Y2O3 Stabilizer Contents (Y2O3안정화제 첨가량에 따라 수열합성법으로 제조된 ZrO2-Xmol% Y2O3분말의 합성 및 기계적 특성)

  • Lee, Hak-Joo;Kim, Taik-Nam;Bea, Sung-Chul;Go, Myung-Won;Ryu, Jae-Kyung
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.518-523
    • /
    • 2010
  • In this study, partially stabilized zirconia was synthesized using a chemical $Y_2O_3$ stabilizer and hydrothermal method. First, $YCl_3-6H_2O$ and $ZrCl_2O-8H_2O$ was dissolved in distilled water. Y-TZP (a $Y_2O_3$-doped toughened zirconia polycrystalline precursor) was also prepared by conventional co-precipitates in the presence of an excess amount of $NH_4OH$ solution under a fixed pH of 12. The Y-TZP precursors were filtered and repeatedly washed with distilled water to remove $Cl^-$ ions. $ZrO_2$-Xmol%$Y_2O_3$ powder was synthesized by a hydrothermal method using Teflon Vessels at $180^{\circ}C$ for 6 h of optimized condition. The powder added with the Xmol%- $Y_2O_3$ (X = 0,1,3,5 mol%) stabilizer of the $ZrO_2$ was synthesized. The crystal phase, particle size, and morphologies were analyzed. Rectangular specimens of $33mm{\times}8mm{\times}3$ mm for three-point bend tests were used in the mechanical properties evaluation. A teragonal phase was observed in the samples, which contains more than 3 mol% $Y_2O_3$. The $3Y-ZrO_2$ agglomerated particle size was measured at $7.01{\mu}m$. The agglomerated particle was clearly observed in the sample of 5 mol % $Y_2O_3-ZrO_2$, and and the agglomerated particle size was measured at 16.4 um. However, a 20 nm particle was specifically observed by FE-SEM in the sample of 3 mol% $Y_2O_3-ZrO_2$. The highest bending fracture strength was measured as 321.3 MPa in sample of 3 mol% $Y_2O_3-ZrO_2$.

Effects of Growth Temperature on Hydrothermally Grown ZnO Nanorod Arrays (수열합성법으로 성장된 산화 아연 나노로드의 성장 온도에 따른 구조적, 광학적 특성 연구)

  • Jeong, Yong-Il;Ryu, Hyuk-Hyun
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.3
    • /
    • pp.211-216
    • /
    • 2011
  • In this study, the effects of growth temperature on structural and optical properties of hydrothermally grown ZnO nanorod arrays have been investigated. Zinc nitrate ($Zn(NO_3)_2$) and hexamethylenetetramine were used as precursors. The ZnO buffered Si(100) with a thickness of 40 nm was used as the substrates. The ZnO nanorods were grown on these substrates with the temperature ranging from 55 to $115^{\circ}C$. The results were characterized by scanning electron microscope, X-ray diffraction and room temperature photoluminescence measurements. Well-aligned ZnO nanorods arrays were obtained from all samples. The tips of nanorods were flat when the temperature was less than $95^{\circ}C$, and the sharp-tip nanoneedle-like morphologies were obtained with the temperature of $115^{\circ}C$. In addition, some bundles were on the nanorods arrays with $115^{\circ}C$ due to the non-equilibrium growth. The growth temperature could affect the crystal and optical properties of ZnO. For the effects on crystal properties, the intensity of (002) peak was increased as the temperature was increased to $75^{\circ}C$, then decreased as the temperature was further increased to $115^{\circ}C$. As for the effects on optical properties, the intensity ratio of UV peak to visible peak is increased with the temperature increasing and the strongest UV peak intensity was obtained with the growth temperature of $95^{\circ}C$.

Structure and Magnetic Properties on Synthesis Route of Co2Z-type Barium Hexaferrite (Co2Z-type Barium Hexaferrite의 합성방법에 따른 결정구조 및 자기적 특성)

  • Baek, In Seung;Nam, In Tak
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • $Co_2Z$-type barium ferrites ($Ba_3Co_2Fe_{24}O_{41}$) were synthesized using variation method. First, M-type, $Co_2Y$-type and $Co_2Z$-type synthesized by hydrothermal method. Second, M- and Y-type precursors for synthesis of $Co_2Z$ hexaferrite by hydrothermal and ball milling method. the morphology, structure and magnetic properties of the barium ferrite particles were characterized using XRD, FESEM, VSM, impedance. As a result, Single phase of M-type and $Co_2Y$-type were obtained. Manufactured powders of M+Y ball milling, M+Y hydrothermal were similar to single phase of $Co_2Z$-type hexaferrite, all powders were obtained theoretical magnetization (50 emu/g). The largest initial permeability were obtained $Co_2Z$ hexaferrite synthesized by reagent precusor, With increasing calcination temperature was lowered the initial permeability. In another synthesis didn't almost that little change could be found.

Petrology and Amphibolites(Meta-Dolerite sill) in the Mungyong Areal Korea (문경지역에 분포하는 각섬암(변성조립현무암)에 대한 암석학적연구)

  • Ahn, Kun-Sang;Shin, In-Hyun;Kim, Hee-Nam
    • Journal of the Korean earth science society
    • /
    • v.18 no.6
    • /
    • pp.500-514
    • /
    • 1997
  • With respect to the amphibolites in the Mungyong area of the central part of the Ogcheon Fold Belt, detail field occurrence, texture and geochemical properties within each sills and petrogenetic environment are presented. We confirmed that the amphibolites in the Sangnaeri Formation (Ogcheon Supergroup) and limestone(Cambro-Ordovician Chosun Supergroup) sequences are metamorphosed dolerite sills which are roughly concordant to bedding of country rocks. Geologic distribution of the rocks is distinctly improved compared with those of previous investigations. There are four main sills so far observed in the study area. One is emplaced in limestone(Ls Sill, about 3 m thick) and the others are emplaced in Sangnaeri Formation, which are named First Sill(about 40 m thick), Second Sill(about 100 m thick) and Third Sill(about 40 m thick) from lower to upper horizons of the meta-pelitic sequences. The thick sills are intruded by minor sills and the Third Sill is a composite sill consisting of two main and two minor sills. Each sill has fine grained chilled marginal zones and grain size increases inwards from both contacts. The Second Sill has various vein and white patch in central part and the rock compositions vary systematically from margin to central part. $SiO_2,\;Na_2O,\;K_2O\;and\;P_2O_5$ increase, whereas $TiO_2,\;FeO,\;Al_2O_3\;and\;CaO$ decrease toward the contort. We investigate the major and trace element variations of ten selected rock compositions as intruding initial magma take occurrence and chemical properties into consideration. The compositional variations of them can not be explained by fractionation crystallization of single magma. Geologic distribution, geochemical properties and previous data suggest that amphibolite precursors(basaltic magma) of the study area were intrusive as sill-like in an intracontinental rift environment.

  • PDF

Fertilizer and Organic Inputs Effects on CO2 and CH4 Emission from a Soil under Changing Water Regimes (토양 수분 변동 조건에서 시비 및 유기물 투입에 따른 CO2와 CH4 방출 특성)

  • Lim, Sang-Sun;Choi, Woo-Jung;Kim, Han-Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.2
    • /
    • pp.104-112
    • /
    • 2012
  • BACKGROUND: Agricultural inputs (fertilizer and organic inputs) and water conditions can influence $CH_4$ and $CO_2$ emission from agricultural soils. This study was conducted to investigate the effects of agricultural inputs (fertilizer and organic inputs) under changing water regime on $CH_4$ and $CO_2$ emission from a soil in a laboratory incubation experiment. METHODS AND RESULTS: Four treatments were laid out: control without input and three type of agricultural inputs ($(NH_4)_2SO_4$, AS; pig manure compost, PMC; hairy vetch, HV). Fertilizer and organic inputs were mixed with 25 g of soil at 2.75 mg N/25 g soil (equivalent to 110 kg N/ha) in a bottle with septum, and incubated for 60 days. During the first 30-days incubation, the soil was waterlogged (1 cm of water depth) by adding distilled water weekly, and on 30 days of incubation, excess water was discarded then incubated up to 60 days without addition of water. Based on the redox potential, water regime could be classified into wetting (1 to 30 days), transition (31 to 40 days), and drying periods (41 to 60 days). Across the entire period, $CH_4$ and $CO_2$ flux ranged from 0 to 13.8 mg $CH_4$/m/day and from 0.4~1.9 g $CO_2$/m/day, and both were relatively higher in the early wetting period and the boundary between transition and drying periods. During the entire period, % loss of C relative to the initial was highest in HV (16.4%) followed by AS (8.1%), PMC (7.5%), and control (5.4%), indicating readily decomposability of HV. Accordingly, both $CH_4$ and $CO_2$ fluxes were greatest in HV treatment. Meanwhile, the lower $CH_4$ flux in AS and PMC treatments than the control was ascribed to reduction in $CH_4$ generation due to the presence of oxidized compounds such as ${SO_4}^{2-}$, $Fe^{3+}$, $Mn^{4+}$, and ${NO_3}^-$ that compete with precursors of $CH_4$ for electrons. CONCLUSION: Green manure such as HV can replace synthetic fertilizer in terms of N input, however, it may increase $CH_4$ emission from soils. Therefore, co-application of green manure and livestock manure compost needs to be considered in order to achieve satisfactory N supply and to mitigate $CH_4$ and $CO_2$ emission.