Browse > Article
http://dx.doi.org/10.5757/JKVS.2011.20.3.211

Effects of Growth Temperature on Hydrothermally Grown ZnO Nanorod Arrays  

Jeong, Yong-Il (Department of Nano Systems Engineering, Inje University)
Ryu, Hyuk-Hyun (Department of Nano Systems Engineering, Inje University)
Publication Information
Journal of the Korean Vacuum Society / v.20, no.3, 2011 , pp. 211-216 More about this Journal
Abstract
In this study, the effects of growth temperature on structural and optical properties of hydrothermally grown ZnO nanorod arrays have been investigated. Zinc nitrate ($Zn(NO_3)_2$) and hexamethylenetetramine were used as precursors. The ZnO buffered Si(100) with a thickness of 40 nm was used as the substrates. The ZnO nanorods were grown on these substrates with the temperature ranging from 55 to $115^{\circ}C$. The results were characterized by scanning electron microscope, X-ray diffraction and room temperature photoluminescence measurements. Well-aligned ZnO nanorods arrays were obtained from all samples. The tips of nanorods were flat when the temperature was less than $95^{\circ}C$, and the sharp-tip nanoneedle-like morphologies were obtained with the temperature of $115^{\circ}C$. In addition, some bundles were on the nanorods arrays with $115^{\circ}C$ due to the non-equilibrium growth. The growth temperature could affect the crystal and optical properties of ZnO. For the effects on crystal properties, the intensity of (002) peak was increased as the temperature was increased to $75^{\circ}C$, then decreased as the temperature was further increased to $115^{\circ}C$. As for the effects on optical properties, the intensity ratio of UV peak to visible peak is increased with the temperature increasing and the strongest UV peak intensity was obtained with the growth temperature of $95^{\circ}C$.
Keywords
Zinc oxide; Hydrothermal synthesis; Nanorod;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Zhang, D. R. Yang, X. Y. Ma, Y. Y. Ji, J. Xu,and D. L. Que, Nanotechnology 15, 622 (2004).   DOI
2 Z. K. Li, X. T. Huang, J. P. Liu, and H. H. Ai,Mater. Lett. 62, 2507 (2008).   DOI
3 A. Rahma, G. W. Yang, M. Lorenza, T. Nobisa,J. Lenznera, G. Wagnerc, and M. Grundman, Thin Solid Films 486, 191 (2005).   DOI
4 X. Y. Kong, Y. Ding, R. Yang, and Z. L. Wang,Science 303, 1348-1351 (2004).   DOI   ScienceOn
5 Y. H. Jang, S. Y. Yang, Y. J. Jang, C. Park, J.K. Kim, and D. H. Kim, Chem-Eur. J. 17, 2068-2076 (2011).   DOI
6 D. Polsongkram, P. Chamninok, S. Pukird, L.Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, andA. Schulte, Physica B 403, 3713 (2008).   DOI
7 F. Li, L. Hua, Z. Li, and X. T. Huang, J. Alloys Compd. 465, L14 (2008).   DOI
8 D. L. Zhu, H. Zhu, and Y. H. Zhang, J. Cryst. Growth 249, 172 (2003).   DOI
9 S. -J. Lee, S. K. Park, C. R. Park, J. Y. Lee, J.H. Park, and Y. R. Do, J. Phys. Chem. C 111,11793-11801 (2007).   DOI
10 X. W. Sun, J. L. Zhao, S. T. Tan, L. H. Tan, C.H. Tung, G. Q. Lo, D. L. Kwong, Y. W. Zhang,X. M. Li, and K. L. Teo, Appl. Phys. Lett. 92, 111113 (2008).   DOI
11 A. Teke, U. Ozgur, S. Dogan, X. Gu, H. Moron,B. Nemeth, J. Nause, and H. O. Everitt, Phys. Rev. B 70, 195207 (2004).   DOI
12 P. Jiang, J. J. Zhou, H. F. Fang, C. Y. Wang, Z.L. Wang, and S. S. Xie, Adv. Funct. Mater. 17,1303 (2007).   DOI
13 F. Li, Z. Li and F. J. Jin, Mater. Lett. 61, 1876(2007).   DOI
14 H. Cao, J. Y. Xu, D. Z. Zhang, S. H. Chang, S.T. Ho, E.W. Seelig, X. Liu, and R. P. H. Chang, Phys. Rev. Lett. 84, 5584 (2000).   DOI
15 Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng,J. Xu, Q. Zhao, B. Xiang, R. M. Wang, and D.P. Yu, Appl. Phys. Lett. 83, 144 (2003).   DOI
16 K. Takanezawa, K. Hirota, Q. Wei, K. Tajima, andK. Hashimoto, J. Phys. Chem. C 111, 7218 (2007).   DOI