Browse > Article
http://dx.doi.org/10.4014/jmb.1805.05013

Comparative Genomic and Genetic Functional Analysis of Industrial L-Leucine- and L-Valine-Producing Corynebacterium glutamicum Strains  

Ma, Yuechao (National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology)
Chen, Qixin (National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology)
Cui, Yi (National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology)
Du, Lihong (National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology)
Shi, Tuo (National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology)
Xu, Qingyang (National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology)
Ma, Qian (National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology)
Xie, Xixian (National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology)
Chen, Ning (National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.11, 2018 , pp. 1916-1927 More about this Journal
Abstract
Corynebacterium glutamicum is an excellent platform for the production of amino acids, and is widely used in the fermentation industry. Most industrial strains are traditionally obtained by repeated processes of random mutation and selection, but the genotype of these strains is often unclear owing to the absence of genomic information. As such, it is difficult to improve the growth and amino acid production of these strains via metabolic engineering. In this study, we generated a complete genome map of an industrial L-valine-producing strain, C. glutamicum XV. In order to establish the relationship between genotypes and physiological characteristics, a comparative genomic analysis was performed to explore the core genome, structural variations, and gene mutations referring to an industrial L-leucine-producing strain, C. glutamicum CP, and the widely used C. glutamicum ATCC 13032. The results indicate that a 36,349 bp repeat sequence in the CP genome contained an additional copy each of lrp and brnFE genes, which benefited the export of L-leucine. However, in XV, the kgd and panB genes were disrupted by nucleotide insertion, which increase the availability of precursors to synthesize L-valine. Moreover, the specific amino acid substitutions in key enzymes increased their activities. Additionally, a novel strategy is proposed to remodel central carbon metabolism and reduce pyruvate consumption without having a negative impact on cell growth by introducing the CP-derived mutant $H^+$/citrate symporter. These results further our understanding regarding the metabolic networks in these strains and help to elucidate the influence of different genotypes on these processes.
Keywords
Corynebacterium glutamicum; comparative genomics analysis; genotype; branched-chain amino acid; L-valine; L-leucine;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 van der Rest ME, Lange C, Molenaar D. 1999. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl. Microbiol. Biotechnol. 52: 541-545.   DOI
2 Husemann P, Stoye J. 2010. r2cat: synteny plots and comparative assembly. Bioinformatics 26: 570-571.   DOI
3 Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145: 69-73.   DOI
4 Cremer J, Eggeling L, Sahm H. 1991. Control of the lysine biosynthesis sequence in Corynebacterium glutamicum as analyzed by overexpression of the individual corresponding genes. Appl. Environ. Microbiol. 57: 1746-1752.
5 Wendisch, Volker F. 2006. Genetic regulation of Corynebacterium glutamicum metabolism. J. Microbiol. Biotechnol. 16: 1010-1016.
6 Gui Y, Ma Y, Xu Q, Zhang C, Xie X, Chen N. 2016. Complete genome sequence of Corynebacterium glutamicum CP, a Chinese l-leucine producing strain. J. Biotechnol. 220: 64-65.   DOI
7 Baumgart M, Unthan S, Ruckert C, Sivalingam J, Grunberger A, Kalinowski J, et al. 2013. Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology. Appl. Environ. Microbiol. 79: 6006-6015.   DOI
8 Yin L, Shi F, Hu X, Chen C, Wang X. 2013. Increasing L-isoleucine production in Corynebacterium glutamicum by overexpressing global regulator Lrp and two-component export system BrnFE. J. Appl. Microbiol. 114: 1369-1377.   DOI
9 Vogt M, Haas S, Klaffl S, Polen T, Eggeling L, Ooyen JV, et al. 2014. Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction. Metab. Eng. 22: 40-52.   DOI
10 Xie X, Xu L, Shi J, Xu Q, Chen N. 2012. Effect of transport proteins on L-isoleucine production with the L-isoleucineproducing strain Corynebacterium glutamicum YILW. J. Ind. Microbiol. Biotechnol. 39: 1549-1556.   DOI
11 Park JH, Lee SY, Kim TY, Kim HU. 2008. Application of systems biology for bioprocess development. Trends Biotechnol. 26: 404-412.   DOI
12 Lee JY, Na YA, Kim E, Lee HS, Kim P. 2016. The Actinobacterium Corynebacterium glutamicum, an Industrial Workhorse. J. Microbiol. Biotechnol. 26: 807-822.   DOI
13 Kase H, Nakayama K. 1997. L-Isoleucine production by analog-resistant mutants derived from threonine-producing strain of Corynebacterium glutamicum. Agric. Biol. Chem. 41: 109-116.
14 Vallino JJ, Stephanopoulos G. 1993. Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol. Bioeng. 41: 633-646.   DOI
15 Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, et al. 2002. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res. 9: 189-197.   DOI
16 Hua Q, Yang C, Baba T, Mori H, Shimizu K. 2003. Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. J. Bacteriol. 185: 7053-7067.   DOI
17 Patek M. 2005. Regulation of Gene Expression, pp. 81-98. In Eggeling L, Bott M (eds.), Handbook of Corynebacterium glutamicum. CRC Press, Florida.
18 Blombach B, Schreiner ME, Holatko J, Bartek T, Oldiges M, Eikmanns BJ. 2007. L-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum. Appl. Environ. Microbiol. 73: 2079-2084.   DOI
19 Chen C, Li Y, Hu J, Dong X, Wang X. 2015. Metabolic engineering of Corynebacterium glutamicum ATCC13869 for L-valine production. Metab. Eng. 29: 66-75.   DOI
20 Inui M, Murakami S, Okino S, Kawaguchi H, Vertes AA, Yukawa H. 2004. Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J. Mol. Microbiol. Biotechnol. 7: 182-196.   DOI
21 Peters-Wendisch P, Stolz M, Etterich H, Kennerknecht N, Sahm H, Eggeling L. 2005. Metabolic engineering of Corynebacterium glutamicum for L-serine production. Appl. Environ. Microbiol. 71: 7139-7144.   DOI
22 Wagner T, Bellinzoni M, Wehenkel A, O'Hare HM, Alzari PM. 2011. Functional plasticity and allosteric regulation of ${\alpha}$-ketoglutarate decarboxylase in central mycobacterial metabolism. Chem. Biol. 18: 1011-1020.   DOI
23 Bunik VI, Fernie AR. 2009. Metabolic control exerted by the 2-oxoglutarate dehydrogenase reaction: a cross-kingdom comparison of the crossroad between energy production and nitrogen assimilation. Biochem. J. 422: 405-421.   DOI
24 Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, et al. 2003. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J. Biotechnol. 104: 5-25.   DOI
25 Tauch A, Hermann T, Burkovski A, Kramer R, Puhler A, Kalinowski J. 1998. Isoleucine uptake in Corynebacterium glutamicum ATCC 13032 is directed by the brnQ gene product. Arch. Microbiol. 169: 303-312.   DOI
26 Ikeda M, Ohnishi J, Hayashi M, Mitsuhashi S. 2006. A genome-based approach to create a minimally mutated Corynebacterium glutamicum strain for efficient L-lysine production. J. Ind. Microbiol. Biotechnol. 33: 610-615.   DOI
27 Becker J, Zelder O, Hafner S, Schroder H, Wittmann C. 2011. From zero to hero--design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab. Eng. 13: 159-168.   DOI
28 Ikeda M, Nakagawa S. 2003. The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl. Microbiol. Biotechnol. 62: 99-109.   DOI
29 Wu Y, Li P, Zheng P, Zhou W, Chen N, Sun J. 2015. Complete genome sequence of Corynebacterium glutamicum B253, a Chinese lysine-producing strain. J. Biotechnol. 207: 10-11.   DOI
30 Denisov G, Walenz B, Halpern AL, Miller J, Axelrod N, Levy S, et al. 2008. Consensus generation and variant detection by Celera Assembler. Bioinformatics 24: 1035-1040.   DOI
31 Patel RK, Jain M. 2012. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7: e30619.   DOI
32 Seemann, T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30: 2068-2069.   DOI
33 Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754-1760.   DOI
34 Salamov VSA, Solovyev A. 2011. Automatic annotation of microbial genomes and metagenomic sequences, pp. 61-78. In Li RW (ed.), Metagenomics and its Applications in Agriculture, Biomedicine and Environmental Studies. Nova Science Publishers, Hauppauge, N.Y.
35 Bertioli DJ, Moretzsohn MC, Madsen LH, Sandal N, Leal- Bertioli SC, Guimarães PM, et al. 2009. An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes. BMC Genomics 10: 45.   DOI
36 Leuchtenberger W. 1996. Amino acids-technical production and use, pp. 465-502. In Rehm HJ, Reed G (eds.), Biotechnology: Products of primary metabolism, 2th Ed. Verlag-Chemie, Weinheim, Germany.
37 Darling AC, Mau B, Blattner FR, Perna NT. 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14: 1394-1403.   DOI
38 Zhao Y, Wu J, Yang J, Sun S, Xiao J, Yu J. 2012. PGAP: pangenomes analysis pipeline. Bioinformatics 28: 416-418.   DOI
39 Milne I, Bayer M, Cardle L, Shaw P, Stephen G, Wright F, et al. 2010. Tablet--next generation sequence assembly visualization. Bioinformatics 26: 401-402.   DOI
40 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078-2079.   DOI
41 Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, et al. 2004. Versatile and open software for comparing large genomes. Genome Biol. 5: R12.   DOI
42 Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, et al. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6: 80-92.   DOI
43 Kirchner O, Tauch A. 2003. Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J. Biotechnol. 104: 287-299.   DOI