Browse > Article
http://dx.doi.org/10.5338/KJEA.2012.31.2.104

Fertilizer and Organic Inputs Effects on CO2 and CH4 Emission from a Soil under Changing Water Regimes  

Lim, Sang-Sun (Department of Rural & Biosystems Engineering, Chonnam National University)
Choi, Woo-Jung (Department of Rural & Biosystems Engineering, Chonnam National University)
Kim, Han-Yong (Department of Applied Plant Science, Chonnam National University)
Publication Information
Korean Journal of Environmental Agriculture / v.31, no.2, 2012 , pp. 104-112 More about this Journal
Abstract
BACKGROUND: Agricultural inputs (fertilizer and organic inputs) and water conditions can influence $CH_4$ and $CO_2$ emission from agricultural soils. This study was conducted to investigate the effects of agricultural inputs (fertilizer and organic inputs) under changing water regime on $CH_4$ and $CO_2$ emission from a soil in a laboratory incubation experiment. METHODS AND RESULTS: Four treatments were laid out: control without input and three type of agricultural inputs ($(NH_4)_2SO_4$, AS; pig manure compost, PMC; hairy vetch, HV). Fertilizer and organic inputs were mixed with 25 g of soil at 2.75 mg N/25 g soil (equivalent to 110 kg N/ha) in a bottle with septum, and incubated for 60 days. During the first 30-days incubation, the soil was waterlogged (1 cm of water depth) by adding distilled water weekly, and on 30 days of incubation, excess water was discarded then incubated up to 60 days without addition of water. Based on the redox potential, water regime could be classified into wetting (1 to 30 days), transition (31 to 40 days), and drying periods (41 to 60 days). Across the entire period, $CH_4$ and $CO_2$ flux ranged from 0 to 13.8 mg $CH_4$/m/day and from 0.4~1.9 g $CO_2$/m/day, and both were relatively higher in the early wetting period and the boundary between transition and drying periods. During the entire period, % loss of C relative to the initial was highest in HV (16.4%) followed by AS (8.1%), PMC (7.5%), and control (5.4%), indicating readily decomposability of HV. Accordingly, both $CH_4$ and $CO_2$ fluxes were greatest in HV treatment. Meanwhile, the lower $CH_4$ flux in AS and PMC treatments than the control was ascribed to reduction in $CH_4$ generation due to the presence of oxidized compounds such as ${SO_4}^{2-}$, $Fe^{3+}$, $Mn^{4+}$, and ${NO_3}^-$ that compete with precursors of $CH_4$ for electrons. CONCLUSION: Green manure such as HV can replace synthetic fertilizer in terms of N input, however, it may increase $CH_4$ emission from soils. Therefore, co-application of green manure and livestock manure compost needs to be considered in order to achieve satisfactory N supply and to mitigate $CH_4$ and $CO_2$ emission.
Keywords
$CH_4$ emission; $CO_2$ emission; Organic input; Synthetic fertilizer; Water regime;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Turner, B.L., 2004. Optimizing phosphorus characterization in animal manures by solution phosphorus-31 nuclear magnetic resonance spectroscopy. J. Environ. Qual. 33, 757-766.   DOI   ScienceOn
2 Yagi, K., Minami, K., 1990. Effect of organic matter applications on methane emission from some Japanese paddy fields. Soil Sci. Plant Nutr. 36, 599-610.   DOI
3 Yagi, K., Tsuruta, H., Kanda, K., Minami, K., 1996. Effect of water management of methane emission from a Japanese rice paddy field: Automated methane monitoring. Glob. Biogeochem. Cycle 10, 255-267.   DOI   ScienceOn
4 Yan, H., Cao, M., Liu, J., Tao, B., 2007. Potential and sustainability for carbon sequestration with improved soil management in agricultural soils of China. Agr. Ecosyst. Environ. 121, 325-335.   DOI   ScienceOn
5 Yun, S.I., Kang, B.M., Lim, S.S., Choi, W.J., Ko, J., Yoon, S., Ro, H.M., Kim, H.Y., 2012. Further understanding CH4 emission from a flooded rice field exposed to experimental warming with elevated [$CO_2$]. Agric. For. Meteorol. 154-155, 75-83.   DOI   ScienceOn
6 Zheng, J., Zhang, X., Li, L., Zhang, P., Pan, G., 2007. Effect of long-term fertilization on C mineralization and production of $CH_4$ and $CO_2$ under anaerobic incubation from bulk samples and particle size fractions of a typical paddy soil. Agr. Ecosyst. Environ. 120, 129-138.   DOI   ScienceOn
7 Meijide, A., Cardenas, L.M., Sanchez-Martin, L., Vallejo, A., 2010. Carbon dioxide and methane fluxes from a barely field amended with organic fertilizers under Mediterranean climatic conditions. Plant Soil 328, 353-367.   DOI
8 Mer, J.L. Roger, P., 2001. Production, oxidation, emission and consumption of methane by soils: A review. Eur. J. Soil Biol. 37, 25-50.   DOI   ScienceOn
9 Moore, T.R., Dalva, M., 1997. Methane and carbon dioxide exchange potentials of peat soils in aerobic and anaerobic laboratory incubations. Soil Biol. Biochem. 29, 1157-1164.   DOI   ScienceOn
10 Nouchi, I., Yonemura, S., 2005. $CO_2$, $CH_4$ and $N_2O$ fluxes from soybean and barely double-cropping in relation to tillage in Japan. Phyton-ann. Rei Bot. A. 45, 327-338.
11 Nyberg, G., Ekblad, A., Buresh, R., Högberg, P., 2002. Short-term patterns of carbon and nitrogen mineralization in a fallow field amended with green manures from agroforesty trees. Biol. Fertil. Soils. 36, 18-25.   DOI
12 Lee, C.H., Park, K.D., Jung, K.Y., Ali, M.A., Lee, D., Gutierrez, J., Kim, P.J., 2010. Effect of chinese milk vetch (Astragalus sinicus L.) as a green manure on rice productivity and methane emission in paddy soil. Agric. Ecosyst. Environ . 138, 343-347.   DOI   ScienceOn
13 Powlson, D.S., Whitmore, A.P., Goulding, K.W.T., 2011. Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Eur. J. Soil Sci. 62, 43-55.
14 Shin, Y.K., Lee, Y.S., Ahn, J.W., Koh, M.H., Eom, K.C., 2003. Seasonal change of rice-mediated methane emission from a rice paddy under different water management and organic amendments. Korean J. Soil Sci. Fert. 36, 41-49.
15 Sumner, M.E., Miller, W.P., 1996. Cation exchange capacity and exchange coefficients. p. 1201-1229. In Sparks, D.L. et al., (ed.) Methods of soil analysis, part 3. Chemical methods. ASA and SSSA, Madison, Wi, USA.
16 Lee, S.I., Lim, S.S., Lee, K.S., Kwak, J.H., Jung, J.W., Ro, H.M., Choi, W.J., 2011. Kinetic responses of soil carbon dioxide emission to increasing urea application rate. Korean J. Environ. Agric. 30, 209-215.   DOI   ScienceOn
17 Lim, S.S., Lee, K.S., Lee, S.I., Lee, D.S., Kwak, J.H., Hao, X., Ro, H.M., Choi, W.J., 2012. Carbon mineralization and retention of livestock manure composts with different substrate quality in three soils. J. Soils Sediments. 12, 312-322.   DOI
18 Lim, SS., Jung, J.W., Choi, W.J., Ro, H.M., 2011. Substrate quality effects on decomposition of three livestock manure composts with similar stability degree in an acid loamy soil. Korean J. Soil Sci. Fert. 44, 627-633.
19 Lopez, M., Huerta-Pujol, O., Martinez-Farre, F.X., Soliva, Montserrat., 2010. Approaching compost stability from klason lignin modified method: Chemical stability degree for OM and N quality assessment, Resour. Conserv. Recy. 55, 171-181.   DOI   ScienceOn
20 Mandal, B., Majumder, B., Bandyopadhyay, P.K.. Hazra, G.C.. Gangopadhyay, A.. Samantaray, R.N., Mishra, A.K., Chaudhury, J., Saha, M.N., Kundu, S., 2007. The potential of cropping systems and soil amendments for carbon sequestration in soils under long-term experiments in subtropical India. Global Change Biol. 13, 357-369.   DOI   ScienceOn
21 Mikha, M.M., Rice, C.W. Milliken, G.A., 2005. Carbon and nitrogen mineralization as affected by drying and wetting cycles. Soil Biol. Biochem. 37, 339-347.   DOI   ScienceOn
22 Hou, A.X., Wang, Z.P., Chen, G.X., Patrick Jr., H., 2000. Effects of organic and N fertilizers on methane production potential in a Chinese rice soil and its microbiological aspect. Nutr. Cycl. Agroecosys. 58, 333-338.   DOI   ScienceOn
23 Hutsch, B.W., 1998. Methane oxidation in arable soil as inhibited by ammonium, nitrite, and organic manure with respect to soil pH. Biol. Fertil. Siols 28, 27-35.   DOI   ScienceOn
24 Intergovernmental Panel on Climate Change (IPCC). 2007. Mitigation. contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change, 2007. Cambridge University Press, Cambridge.
25 Iqbal, J., Hu, R., Lin, S., Hatano, R., Feng, M., Lu, L., Ahamadou, B., Du, L., 2009. $CO_2$ emission in a subtropical red paddy soil (Ultisol) as affected by straw and N fertilizer application: A case study in Southern China. Agr. Ecosyst. Environ. 131, 292-302.   DOI   ScienceOn
26 Jastrow, J.D., Amonette, E.J., Bailey, V.L., 2007. Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Climatic Change 80, 5-23.   DOI   ScienceOn
27 Keeney, D.R., Nelson, D.W., 1982. Nitrogen-inorganic form. p. 643-698. In Page Al (ed.) Methods of soil analysis. part 2. Chemical and microbiological properties, ASA and SSSA, Madison, USA.
28 Chu, H., Hosen, Y., Yagi, K,. 2007. NO, $N_2O$, $CH_4$ and $CO_2$ fluxes in winter barely field of Japanese Andisol as affected by N fertilizer management. Soil Biol. Biochem. 39, 330-339.   DOI   ScienceOn
29 Kim. J.G., Lee, K.B., Lee, S.B., Lee, D.B., Kim, S.J., 2000. The effect of long-term application of different organic material sources on chemical properties of upland soil. Korean J. soil Sci. Fert. 33, 416-431.
30 Kimetu, J.M., Lehmann, J., Ngoze, S.O., Mugendi, D.N., Kinyangi, J.M., Riha, S., Verchot, L., Rcha, J.W., Pell, A.N., 2008. Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 11, 726-739.   DOI
31 Dalal, R.C. Allen, D.E., Livesley, S.J., Richards, G., 2008. Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes: a review. Plant Soil 309, 43-76.   DOI
32 Denmead, O.T., 1995. Novel meterological methods for measuring trace gas fluxes. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 351, 383-396.   DOI
33 Ellert, B.H., Janzen, H.H., 2008. Nitrous oxide, carbon dioxide and methane emissions from irrigated cropping systems as influenced by legumes, manure and fertilizer. Can. J. Soil SCi. 88, 207-217.   DOI   ScienceOn
34 Franzluebbers, K., Weaver, R.W., Juo, A.S.R., Franzluebbers, A.J., 1994. Carbon and nitrogen mineralization from cowpea plants part decomposition in moist and in repeatedly dried and wetted soil. Soil Biol. Biochem. 26, 1379-1387.   DOI   ScienceOn
35 Fog, K., 1988. The effect of added nitrogen on the rate of decomposition of organic matter. Biological Review 63, 433-462.   DOI
36 Ali, M.A., Lee, C.H. Kim, S.Y., Kim, P.J., 2009. Effect of industrial by-products containing electron acceptors on mitigating methane emission during rice cultivation. Waste Manage. 29, 2759-2764.   DOI   ScienceOn
37 Galang, J.S., Zipper, C.E., Prisley, S.P., Galbraith, J.M., Donovan, P.F., 2007. Evaluating terrestrial carbon sequestration options for virginia. Environ. Manage. 39, 139-150.   DOI
38 Gee, G.W., Bauder, J.W., 1986. Particle size analysis. p. 383-412. In Campbell, G.S. et al., (ed.) Methods of soil analysis, part 1. Physical and mineralogical methods. ASA and SSSA, Madison, Wi, USA.
39 Gil, M.V., Carballo, M.T., Calvo, L.F., 2008. Fertilization of maize with compost from cattle manure supplemented with additional mineral nutrients. Waste Manage. 28, 1432-1440.   DOI   ScienceOn
40 Alluvione, F., Bertora, C., Zavattaro, L., Grignani, C., 2010. Nitrous oxide and carbon dioxide emissions following green manure and compost fertilization in corn. Soil Sci. Soc. Am. J. 74, 384-395.   DOI   ScienceOn
41 Bedard C., Knowles, R., 1989. Physiology, biochemistry, and specific inhibitors of $CH_4$, ${NH_4}^+$, and CO oxidation by methanotrophs and nitrifiers. Microbiological reviews 68-84.
42 Bernal, M.P., Sanchez-Mondedero, M.A., Paredes, C., Roig, A., 1998. Carbon mineralization from organic wastes at different composting stages during their incubation with soil. Agric. Ecosyst. Environ. 69, 175-189.   DOI   ScienceOn
43 Blanco-Canqui, H., Lal, R., 2004. Mechanisms of carbon sequestration in soil aggregates. Crit. Rev. Plant Sci. 23, 481-504.   DOI   ScienceOn
44 Ajawa, H.A., Tabatabai, M.A., 1994. Decomposition of different organic materials in soils. Biol. Fertil. Soils 18, 175-182.   DOI
45 Bronson, K.F., Singh, U., Neue, H.U., Jr. Abao, E.B., 1997. Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil, I. Residue, nitrogen, and water management. Soil Sci. Soc. Am. J. 61, 981-987.   DOI   ScienceOn
46 Chen, R., Lin, X., Wang, Y., Hu, J., 2011. Mitigating methane emissions from irrigated paddy fields by application of aerobically composted livestock manures in eastern China. Soil Use Manage. 27, 103-109.   DOI   ScienceOn
47 Choi, W.J., Matushima, M., Ro, H.M., 2011. Sensitivity of soil $CO_2$ emission to fertilizer nitrogen species: Urea, ammonium sulfate, potassium nitrate, and ammonium nitrate. J. Korean Soc. Appl. Biol. Chem. 54, 1004-1007.   DOI