• Title/Summary/Keyword: Fe nanoparticle

Search Result 158, Processing Time 0.027 seconds

Magnetically Driven Assemblies of γ-Fe3O4 Nanoparticles into Well-Ordered Permanent Structures

  • Byun, Myunghwan
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.229-234
    • /
    • 2017
  • We report on a simple and robust route to the spontaneous assembly of well-ordered magnetic nanoparticle superstructures by irreversible evaporation of a sessile single droplet of a mixture of a ferrofluid (FF) and a nonmagnetic fluid (NF). The resulting assembled superstructures are seen to form well-packed, vertically arranged columns with diameters of $5{\sim}0.7{\mu}m$, interparticle spacings of $9{\sim}2{\mu}m$, and heights of $1.3{\sim}3{\mu}m$ The assembled superstructures are strongly dependent on both the magnitude of magnetic field and the mixing ratio of the mixture. As the magnitude of the externally applied magnetic field and the mixing ratio of the mixture increase gradually, the size and interspacing of the magnetic nanoparticle aggregations decrease. Without an externally applied magnetic field, featureless patterns are observed for the ${\gamma}-Fe_3O_4$ nanoparticle aggregations. The proposed approach may lead to a versatile, cost-effective, fast, and scalable fabrication process based on the field-induced self-assembly of magnetic nanoparticles.

Pressure-infiltration of Fe3O4-nanoparticles Into Porous Silicon and a Packing Density Monitoring Technique (다공성실리콘내 Fe3O4 나노입자의 압력침착과 채움밀도 모니터링 방법)

  • Lee, Joo Hyeon;Lee, Jae Joon;Lee, Ki Won
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.385-391
    • /
    • 2015
  • In this paper, we propose a new method to infiltrate $Fe_3O_4$-nanoparticles into a porous silicon film and a monitoring technique to detect packing density of nanoparticles within the film. Recently, research to use porous silicon as a drug carrier or a new functional sensor material by infiltrating $Fe_3O_4$-nanoparticles has been extensively performed. However, it is still necessary to enhance the packing density and to develop a monitoring technique to detect the packing density in real time. In this light, we forcibly injected a nanoparticle solution into a rugate-structured free-standing porous silicon (FPS) film by applying a pressure difference between the two sides of the film. We found that the packing density by the pressure-infiltration method proposed in this paper is enhanced, relative to that by the previous diffusion method. Moreover, a continuous shift in wavelength of the rugate reflectance peak measured from the film surface was observed while the nanoparticle solution was being injected. By exploiting this phenomenon, we could qualitatively monitor the packing density of $Fe_3O_4$-nanoparticles within the FPS film with the injection volume of the nanoparticle solution.

Analysis of Au-DNA Nanowires by Controlling pH Value of Gold Nanoparticles

  • Jeong, Yun-Ho;Jo, Hyeon-Ji;No, Yong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.391-392
    • /
    • 2013
  • 반도체 집적회로의 고집적화 및 고성능화를 위한 기본 소자(MOSFET)의 미세화 및 단위공정의 물리적 한계를 극복하기 위해 기존의 Top-down 방식에서 buttom-up 방식의 공정에 대한 연구가 진행되고 있다. 그 중 nanoparticles를 이용한 나노소자 제작 연구가 이루어지고 있다. 하지만 이러한 nanoparticles를 이용한 나노소자의 제작에 있어서 원하는 위치에 nanoparticles를 배열하고 정렬하는데 어려움을 겪고 있다. 이 문제를 해결하기 위해서 자기조립 특성을 가지고 있는 DNA분자와 기능화를 통하여 표면에 positive charge를 띄고있는 Gold nanoparticles를 상호결합 시키는 실험을 하였다. Au-DNA nanowire는 backbone에 있는 phosphate부분에서 negative charge를 띠고 있는 DNA와 positive charge를 띠고 있는 Gold nanoparticles가 결합하는 원리로 형성된다. 그렇지만 Gold particles를 표면이 아닌 DNA에만 붙이는 것은 아직 해결해야 할 부분으로 남아있다. 본 연구에서는 이 문제를 해결하기 위하여 pH 조절을 통하여 기능화된 Gold particles의 charge의 변화를 주고 이를 Zeta potential 측정기로 측정한 후에 이 particles와 DNA를 결합시켜서 FE-SEM과 AFM 으로 확인하는 실험을 하였다.

  • PDF

Structure and Magnetic Characterization of Core-Shell Fe@ZrO2 Nanoparticles Synthesized by Sol-Gel Process

  • Chaubey, Girija S.;Kim, Jin-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2279-2282
    • /
    • 2007
  • Highly crystalline, uniform Fe nanoparticles were successfully synthesized and encapsulated in zirconia shell using sol-gel process. Two different approaches have been employed for the coating of Fe nanoparticle with zirconia. The thickness of zirconia shell can be readily controlled by altering molar ratio of Fe nanoparticle core to zirconia precursor in the first case where as reaction time was found to be most effective parameter to controlled the shell thickness in the second method. The structure and magnetic properties of the ZrO2-coated Fe nanoparticles were studied. TEM and HRTEM images show a typical core/shell structure in which spherical α-iron crystal sized of ~25 nm is surrounded by amorphous ZrO2 coating layer. TGA study showed an evidence of weight loss of less than 2% over the temperature range of 50-500 °C. The nanoparticles are basically in ferromagnetic state and their magnetic properties depend strongly on annealing temperature. The thermal treatment carried out in as-prepared sample resulted in reduction of coercivity and an increase in saturation magnetization. X-ray diffraction experiments on the samples after annealing at 400-600 °C indicate that the size of the Fe@ZrO2 particles is increased slightly with increasing annealing temperature, indicating the ZrO2 coating layer is effective to interrupt growing of iron particle according to heat treatment.

Fabrication of Iron-Molybdenum Alloyed Nanoparticle and Nanowire using Chemical Vapor Condensation(CVC) (화학적 기상 응축(CVC)법을 이용한 철-몰리브덴합금 나노 입자와 와이어의 제조)

  • Ha, Jong-Keun;Cho, Kwon-Koo;Kim, Ki-Won;Ryu, Kwang-Sun
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.223-229
    • /
    • 2010
  • Iron(Fe)-Molybdenum(Mo) alloyed nanoparticles and nanowires were produced by the chemical vapor condensation(CVC) process using the pyrolysis of iron pentacarbonyl($Fe(CO)_5$) and Molybdenum hexacarbonyl($Mo(CO)_6$). The influence of CVC parameter on the formation of nanoparticle, nanowire and size control was studied. The size of Fe-Mo alloyed nanoparticles can be controlled by quantity of gas flow. Also, Fe-Mo alloyed nanowires were produced by control of the work chamber pressure. Moreover, we investigated close correlation of size and morphology of Fe-Mo nanoparticles and nanowires with atomic quantity of inflow precursor into the electric furnace as the quantitative analysis. Obtained nanoparticles and nanowires were investigated by field emission scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction.

Performance of PEG on immobilization of zero valent metallic particles on PVDF membrane for nitrate removal

  • Chan, Yi Shee;Chan, Mieow Kee;Ngien, Su Kong;Chew, Sho Yin;Teng, Yong Kang
    • Membrane and Water Treatment
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • The principal objective of this study is to investigate the effect of Polyethylene Glycol (PEG) crosslinking in Polyvinylidene Fluoride (PVDF) in immobilization of Fe and bimetallic Fe/Cu and Cu/Fe zero valent particles on the membrane and its efficiency on removal of nitrate in wastewater. PVDF/PEG polymer solution of three weight compositions was prepared to manipulate the viscosity of the polymer. PEG crosslinking was indirectly controlled by the viscosity of the polymer solution. In this study, PEG was used as a modifier of PVDF membrane as well as a cross-linker for the immobilization of the zero valent particles. The result demonstrates improvement in immobilization of metallic particles with the increase in crosslinking of PEG. Nitrate removal efficiency increases too.

Superparamagnetic Properties of MnFe2O4 Nanoparticles (초미세 나노분말 MnFe2O4의 초상자성 성질 연구)

  • Lee, Seung-Wha;Lee, Jae-Gwang;Chae, Kwang-Pyo;Kwon, Woo-Hyun;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.2
    • /
    • pp.57-61
    • /
    • 2009
  • $MnFe_2O_4$ nanoparticles have been prepared by a sol-gel method. The structural and magnetic properties have been investigated by XRD, SEM, and $M{\ddot{o}}ssbauer$ spectroscopy, VSM. $MnFe_2O_4$ powder that was annealed at $250^{\circ}C$ has spinel structure and behaved superparamagnetically at room temperature. $MnFe_2O_4$ annealed at 400 and $500^{\circ}C$ has a typical spinel structure and is ferrimagnetic in nature. The estimated size of superparammagnetic $MnFe_2O_4$ nanoparticle is around 17 nm. The hyperfine fields of the A and B patterns at 4.2 K were found to be 508 and 475 kOe, respectively. The blocking temperature ($T_B$) of superparammagnetic $MnFe_2O_4$ nanoparticle is about 120 K. The magnetic anisotropy constant and relaxation time constant of $MnFe_2O_4$ nanoparticle were calculated to be $4.9{\times}10^5erg/cm^3$.