• Title/Summary/Keyword: Faults Diagnosis

Search Result 513, Processing Time 0.041 seconds

Fault Detection and Diagnosis for an Air-Handling Unit Using Artificial Neural Networks (신경망 이용 공조기 고장검출 및 진단)

  • 이원용;경남호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1288-1296
    • /
    • 2001
  • A scheme for on-line fault detection and diagnosis of an air-handling unit is presented. The fault detection scheme uses residuals which are generated by comparing each measurement with analytical redundancies computed from the reference models. In this paper, artificial neural networks (ANNs) are used to estimate analytical redundancy and to classify faults. The Lebenburg-Marquardt algorithm is used to train feed forward ANNs that provide estimates of continuous states and diagnosis results. The simulation result demonstrated that the ANNs can effectively detect and diagnose faults in the highly non-linear and complex HVAC systems.

  • PDF

The Diagnosis of Squirrel-cage Induction Motor Using Wavelet Analysis and Neural Network (웨이블릿 분석과 신경망을 이용한 농형 유도전동기 고장 진단)

  • Lee, Jae-Yong;Kang, Dae-Seong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.1
    • /
    • pp.75-81
    • /
    • 2008
  • The induction motor is given a great deal of weight on the industry generally. Therefore, the fault of the induction motor may cause the fault to effect another parts or another faults in the whole system as well as in itself. These are accompany with a lose of the reliability in the industrial system. Accordingly to prevent these situation, the scholars have studies the fault diagnosis of the induction motor. In this paper, we proposed the diagnosis system of the induction motor. The method of diagnosis in proposed system is extracted the feature of the current signal by the wavelet transform. These extracted feature is used the automatic discrimination system by the neural network. We experiment the automatic discrimination system using the three faults imitation that often generated in the induction motor. The proposed system have achieved high reliable result with a simple devices about the three faults.

  • PDF

An Efficient Hybrid Diagnosis Algorithm for Sequential Circuits (순차 회로를 위한 효율적인 혼합 고장 진단 알고리듬)

  • 김지혜;이주환;강성호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.5
    • /
    • pp.51-60
    • /
    • 2004
  • Due to the improvements in circuit design and manufacturing technique, the complexity of a circuit is growing. Since the complexity of a circuit causes high frequency of faults, it is very important to locate faults for improvement of yield and reduction of production cost. But unfortunately it takes a long time to find sites of defects by e-beam proving if the physical level. A fault diagnosis algorithm in the Sate level has meaning to reduce diagnosis time by limiting fault sites. In this paper, we propose an efficient fault diagnosis algorithm in the logical level. Our method is hybrid fault diagnosis algorithm using a new fault dictionary and additional fault simulation which minimizes memory consumption and simulation time.

Fault-Tolerant Control of Asynchronous Sequential Machines with Input Faults (고장 입력이 존재하는 비동기 순차 머신을 위한 내고장성 제어)

  • Yang, Jung-Min
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.103-109
    • /
    • 2016
  • Corrective control for asynchronous sequential machines is a novel automatic control theory that compensates illegal behavior or adverse effects of faults in the operation of existent asynchronous machines. In this paper, we propose a scheme of diagnosing and tolerating faults occurring to input channels of corrective control systems. The corrective controller can detect faults occurring in the input channel to the controlled machine, whereas those faults happening in the external input channel cannot be detected. The proposed scheme involves an outer operator which, upon receiving the state feedback, diagnoses a fault and sends an appropriate command signal to the controller for tolerating faults in the external input channel.

Fault Detection and Diagnosis System for a Three-Phase Inverter Using a DWT-Based Artificial Neural Network

  • Rohan, Ali;Kim, Sung Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.238-245
    • /
    • 2016
  • Inverters are considered the basic building blocks of industrial electrical drive systems that are widely used for various applications; however, the failure of electronic switches mainly affects the constancy of these inverters. For safe and reliable operation of an electrical drive system, faults in power electronic switches must be detected by an efficient system that is capable of identifying the type of faults. In this paper, an open switch fault identification technique for a three-phase inverter is presented. Single, double, and triple switching faults can be diagnosed using this method. The detection mechanism is based on stator current analysis. Discrete wavelet transform (DWT) using Daubechies is performed on the Clarke transformed (-) stator current and features are extracted from the wavelets. An artificial neural network is then used for the detection and identification of faults. To prove the feasibility of this method, a Simulink model of the DWT-based feature extraction scheme using a neural network for the proposed fault detection system in a three-phase inverter with an induction motor is briefly discussed with simulation results. The simulation results show that the designed system can detect faults quite efficiently, with the ability to differentiate between single and multiple switching faults.

Fault diagnosis based on likelihood decomposition

  • Uosaki, Katsuji;Kagawa, Tetsuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.272-275
    • /
    • 1992
  • A novel fault diagnosis method based on likelihood decomposition is proposed for linear stochastic systems described by autoregressive (AR) model. Assuming that at some time instant .tau. the fault of one of the following two types is occurs: innovation fault (actuator fault); and observation fault (sensor fault), the log-likelihood function is decomposed into two components based on the observations before and after .tau., respectively, Then, the type of the fault is determined by comparing the log-likelihoods corresponding two types of faults. Numerical examples demonstrate the usefulness of the proposed diagnosis method.

  • PDF

Detection of Mechanical Imbalances of Induction Motors with Instantaneous Power Signature Analysis

  • Kucuker, Ahmet;Bayrak, Mehmet
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1116-1121
    • /
    • 2013
  • Mechanical imbalances are common mechanical faults in induction motors. Vibration monitoring techniques have been widely used for the diagnosis of mechanical faults in induction motors, but electrical detection methods have been preferred in recent years. For many years, researchers have concentrated on the Motor Current Signature Analysis (MCSA). This paper examines the effect of mechanical imbalances to induction machine electrical parameters. Instantaneous Power Signature Analysis (IPSA) technique used to detect these faults. In the paper, a full analysis of the proposed technique is presented, and experimental results for healthy and faulty motors have been shown and discussed.

A Study on The Diagnosis of Broken Rotor Bars in Three Phase Squirrel-Case Induction Motor (3상 농형 유도전동기 회전자 바의 고장진단에 관한 연구)

  • Kim, K.W.;Kwon, J.L.;Lee, K.J.;Kim, W.G.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.635-637
    • /
    • 2001
  • The faults of the squirrel cage induction motor is grew increasingly complex as the faults resulting in the shorting of a stator winding and the broken rotor bar or cracked rotor end ring, bearing faults, and so on. The users of electrical machines initially relied on simple protections such as over-current, over-voltage, earth-fault, etc. to ensure safe and reliable operation. but this method cause heavy financial losses and the threat of safety therefore it has now become very important to diagnose faults at there very inception. in this paper, we are going to discuss the detection method of broken rotor bar of squirrel cage induction motor by the motor current signal analysis(MCSA) and the opening terminal voltage signal analysis.

  • PDF

Fault Diagnosis and Neutral-Point Voltage Control according to Faults for a Three-level Neutral-Point-Clamped PWM Inverter (NPC 3-레벨 PWM 인버터에서 고장 발생에 따른 고장 진단과 중성점 전압 제어)

  • Son Ho-In;Kim Tae-Jin;Kang Dae-Wook;Hyun Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.11-16
    • /
    • 2003
  • The 3-level converter/inverter system is very efficient in the ac motor drives of high voltage and high power application. This paper proposed a simple method to diagnose faults using change of current vector pattern in space vector diagram when the faults occurrence in the 3-level inverter and a control method that can protect system from unbalance of the neutral point voltage according to faults. The validity of the proposed method is demonstrated by the simulation results.

  • PDF

Magnetization Fault Diagnosis of Concentrated Winding BLDC Motors for Compressor (압축기용 집중권 BLDC 전동기의 착자 불량 진단)

  • Lee, Kwang-Woon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.197-203
    • /
    • 2009
  • This paper presents a novel method to diagnose magnetization faults produced during magnetization process using stator coils of a brushless dc motor with concentrated windings. It is demonstrated that the stator coil magnetization faults can cause a drop of energy efficiency of the brushless dc motor through computer simulations using a magnetization fault model and efficiency test using compressors. The proposed method diagnoses the stator coil magnetization faults by using an inverter during the brushless dc motor driving test after the magnetization process is completed. An experimental study on the brushless dc motor for compressor shows that the stator coil magnetization faults can be detected with high sensitivity.