• Title/Summary/Keyword: Fault Diagnosis Control

Search Result 331, Processing Time 0.029 seconds

Integrated Fault Diagnosis Algorithm for Driving Motor of In-wheel Independent Drive Electric Vehicle (인휠 독립 구동 전기 자동차의 구동 모터 통합 고장 진단 알고리즘)

  • Jeon, Namju;Lee, Hyeongcheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.99-111
    • /
    • 2016
  • This paper presents an integrated fault diagnosis algorithm for driving motor of In-wheel independent drive electric vehicle. Especially, this paper proposes a method that integrated the high level fault diagnosis and the low level fault diagnosis in order to improve a robustness and performance of the fault diagnosis system. The high level fault diagnosis is performed using the vehicle dynamics analysis and the low level fault diagnosis is carried using the motor system analysis. The validity of the high level fault diagnosis algorithms was verified through $Carsim^{(R)}$ and MATLAB/$Simulink^{(R)}$ cosimulation and the low level fault diagnosis's validity was shown by applying it to a MATLAB/$Simulink^{(R)}$ interior permanent magnet synchronous motor control system. Finally, this paper presents a fault diagnosis strategy by combining the high level fault diagnosis and the low level fault diagnosis.

An Overview of Fault Diagnosis and Fault Tolerant Control Technologies for Industrial Systems (산업 시스템을 위한 고장 진단 및 고장 허용 제어 기술)

  • Bae, Junhyung
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.548-555
    • /
    • 2021
  • This paper outlines the basic concepts, approaches and research trends of fault diagnosis and fault tolerant control applied to industrial processes, facilities, and motor drives. The main role of fault diagnosis for industrial processes is to create effective indicators to determine the defect status of the process and then take appropriate measures against failures or hazadous accidents. The technologies of fault detection and diagnosis have been developed to determine whether a process has a trend or pattern, or whether a particular process variable is functioning normally. Firstly, data-driven based and model-based techniques were described. Secondly, fault detection and diagnosis techniques for industrial processes are described. Thirdly, passive and active fault tolerant control techniques are considered. Finally, major faults occurring in AC motor drives were listed, described their characteristics and fault diagnosis and fault tolerant control techniques are outlined for this purpose.

Fault diagnosis based on likelihood decomposition

  • Uosaki, Katsuji;Kagawa, Tetsuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.272-275
    • /
    • 1992
  • A novel fault diagnosis method based on likelihood decomposition is proposed for linear stochastic systems described by autoregressive (AR) model. Assuming that at some time instant .tau. the fault of one of the following two types is occurs: innovation fault (actuator fault); and observation fault (sensor fault), the log-likelihood function is decomposed into two components based on the observations before and after .tau., respectively, Then, the type of the fault is determined by comparing the log-likelihoods corresponding two types of faults. Numerical examples demonstrate the usefulness of the proposed diagnosis method.

  • PDF

Fault Diagnostic System Based on Fuzzy Time Cognitive Map

  • Lee, Kee-Sang;Kim, Sung-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.62-68
    • /
    • 1999
  • FCM(Fuzzy Cognitive Map) is proposed for representing causal reasoning. Its structure allows systematic causal reasoning through a forward inference. Authors have already proposed a diagnostic system based on FCM to utilized to identify the true origin of fault by on-line pattern diagnosis. In FCM based fault diagnosis, Temporal Associative Memories (TAM) recall of FCM is utilized to identify the true origin of fault by on-line pattern match where predicted pattern sequences obtained from TAM recall of fault FCM models are compared with actually observed ones. In engineering processes, the propagation delays are induced by the dynamics of processes and may vary with variables involved. However, disregarding such propagation delays in FCM-based fault diagnosis may lead to erroneous diagnostic results. To solve the problem, a concept of FTCM(Fuzzy Time Cognitive Map) is introduced into FCM-based fault diagnosis in this work. Expecially, translation method of FTCM makes it possible to diagnose the fault for some discrete time. Simulation studies through two-tank system is carried out to verify the effectiveness of the proposed diagnostic scheme.

  • PDF

Implementation of an 1/O Card Fault Diagnosis System In Power Plant Simulator (발전소 사뮬레이터 I/O 카드 레벨 고장 진단 시스템의 구현)

  • Byun, S.H.;Ma, B.R.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3192-3194
    • /
    • 2000
  • Many I/o cards such as AOCs, DICs, DOCs and ROCs are used to deal with I&C instruments of control panel in full-scope power plant simulator. To help the maintenance of I/O cards, an I/o card fault diagnosis system is implemented in this paper. The implemented fault diagnosis system has the automatic fault diagnosis function and manual card test function for fault diagnosis. Finally, the test result using I/O cards shows the validity of the implemented fault diagnosis system.

  • PDF

Fault Tolerant Control Design Using IMM Filter with an Application to a Flight Control System (IMM 필터를 이용한 고장허용 제어기법 및 비행 제어시스템에의 응용)

  • 김주호;황태현;최재원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.87-87
    • /
    • 2000
  • In this paper, an integrated design of fault detection, diagnosis and reconfigurable control tot multi-input and multi-output system is proposed. It is based on the interacting multiple model estimation algorithm, which is one of the most cost-effective adaptive estimation techniques for systems involving structural and/or parametric changes. This research focuses on the method to recover the performance of a system with failed actuators by switching plant models and controllers appropriately. The proposed scheme is applied to a fault tolerant control design for flight control system.

  • PDF

On Fault Handling in Control Systems

  • Staroswiecki, Marcel
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.296-305
    • /
    • 2008
  • Whereas fault diagnosis has been the subject of intensive research since the 1970s, the design of fault tolerant systems is a recent research field which does not set its foundations in a unified framework and does not use a unified vocabulary. As a contribution to this special issue, this paper proposes an ontology for the problem of Fault Handling, that embeds the problem of Fault Tolerance.

Low-Cost Fault Diagnosis Algorithm for Switch Open-Damage in BLDC Motor Drives

  • Park, Byoung-Gun;Lee, Kui-Jun;Kim, Rae-Young;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.702-708
    • /
    • 2010
  • In this paper, a fault diagnosis algorithm for brushless DC (BLDC) motor drives is proposed to maintain control performance under switch open-damage. The proposed fault diagnosis algorithm consists of a simple algorithm using measured phase current information and it detects open-circuit faults based on the operating characteristic of BLDC motors. The proposed algorithm quickly recovers control performance due to its short detection time and its reconfiguration of the system topology. It can be embedded into existing BLDC drive software as a subroutine without additional sensors. The feasibility of the proposed fault diagnosis algorithm is proven by simulation and experimental results.

Multiple faults diagnosis of a linear system using ART2 neural networks (ART2 신경회로망을 이용한 선형 시스템의 다중고장진단)

  • Lee, In-Soo;Shin, Pil-Jae;Jeon, Gi-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.244-251
    • /
    • 1997
  • In this paper, we propose a fault diagnosis algorithm to detect and isolate multiple faults in a system. The proposed fault diagnosis algorithm is based on a multiple fault classifier which consists of two ART2 NN(adaptive resonance theory2 neural network) modules and the algorithm is composed of three main parts - parameter estimation, fault detection and isolation. When a change in the system occurs, estimated parameters go through a transition zone in which residuals between the system output and the estimated output cross the threshold, and in this zone, estimated parameters are transferred to the multiple faults classifier for fault isolation. From the computer simulation results, it is verified that when the proposed diagnosis algorithm is performed successfully, it detects and isolates faults in the position control system of a DC motor.

  • PDF

A Design of Power Management and Control System using Digital Protective Relay for Motor Protection, Fault Diagnosis and Control (모터 보호, 고장진단 및 제어를 위한 디지털 보호계전기 활용 전력감시제어 시스템 설계)

  • Lee, Sung-Hwan;Ahn, Ihn-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.10
    • /
    • pp.516-523
    • /
    • 2000
  • In this paper, intelligent methods using digital protective relay in power supervisory control system is developed in order to protect power systems by means of timely fault detection and diagnosis during operation for induction motor which has various load environments and capacities in power systems. The spectrum pattern of input currents was used to monitor to state of induction motors, and by clustering the spectrum pattern of input currents, the newly occurrence of spectrums pattern caused by faults were detected. For diagnosis of the fault detected, the fuzzy fault tree was derived, and the fuzzy relation equation representing the relation between an induction motor fault and each fault type, was solved. The solution of the fuzzy relation equation shows the possibility of each fault's occurring. The results obtained are summarized as follows: 1) The test result on the basis of KEMC1120 and IEC60255, show that the operation time error of the digital motor protective relay is improved within ${\pm}5%$. 2) Using clustering algorithm by unsupervisory learning, an on-line fault detection method, not affected by the characteristics of loads and rates, was implemented, and the degree of dependency by experts during fault detection was reduced. 3) With the fuzzy fault tree, fault diagnosis process became systematic and expandable to the whole system, and the diagnosis for sub-systems can be made as an object-oriented module.

  • PDF