DOI QR코드

DOI QR Code

An Overview of Fault Diagnosis and Fault Tolerant Control Technologies for Industrial Systems

산업 시스템을 위한 고장 진단 및 고장 허용 제어 기술

  • Bae, Junhyung (School of Electronic and Electrical Engineering, Daegu Catholic University)
  • Received : 2021.08.23
  • Accepted : 2021.09.07
  • Published : 2021.09.30

Abstract

This paper outlines the basic concepts, approaches and research trends of fault diagnosis and fault tolerant control applied to industrial processes, facilities, and motor drives. The main role of fault diagnosis for industrial processes is to create effective indicators to determine the defect status of the process and then take appropriate measures against failures or hazadous accidents. The technologies of fault detection and diagnosis have been developed to determine whether a process has a trend or pattern, or whether a particular process variable is functioning normally. Firstly, data-driven based and model-based techniques were described. Secondly, fault detection and diagnosis techniques for industrial processes are described. Thirdly, passive and active fault tolerant control techniques are considered. Finally, major faults occurring in AC motor drives were listed, described their characteristics and fault diagnosis and fault tolerant control techniques are outlined for this purpose.

본 논문에서는 산업 공정, 설비 및 모터 드라이브에 적용되는 고장 진단 및 고장 허용 제어 기술의 기본 개념, 접근법과 연구 동향에 대해서 개괄적으로 기술하였다. 산업 공정을 위한 고장 진단의 주요 역할은 공정의 결함 상태를 파악할 수 있는 효과적인 지표를 만든 후 고장이나 위험한 사고에 대해 적절한 조치를 취하는 것이다. 산업 공정에 패턴이 있는지 특정 프로세스 변수가 정상적으로 동작하는지 확인하기 위해 많은 고장 검출 및 진단 기법이 개발되었다. 먼저 본 논문에서는 데이터 기반 기법과 모델 기반 기법에 대하여 살펴본다. 두 번째로 산업 공정을 위한 고장 검출 및 진단 기법을 살펴본다. 세 번째로 수동형 및 능동형 고장 허용 제어 기법을 살펴본다. 마지막으로 AC 모터 드라이브에서 발생하는 주요 고장을 열거, 그 특성을 살펴보고 이를 위한 고장 진단 및 고장 허용 제어 기술을 살펴본다.

Keywords

References

  1. K. S. Lee, "Concepts and Trends of Fault Detection, Diagnosis, and Fault Tolerant Control," KIEE Magazine, Vol.48, No.4, pp.4-8, 1999.
  2. Y. J. Park, S. K. S. Fan, and C. Y. Hsu, "A Review on Fault Detection and Process Diagnostics in Industrial Processes," Processes, Vol.8, No.9, pp.1123, 2020. DOI: 10.3390/pr8091123
  3. D. Gonzalez-Jimenez, J. del-Olmo, J. Poza, F. Garramiola, and P. Madina, "Data-Driven Fault Diagnosis for Electric Drives: A Review," Sensors, Vol.21, No.12, pp.4024, 2021. DOI: 10.3390/s21124024
  4. R. Isermann, Fault-Diagnosis Applications: Model-based condition monitoring: Actuators, drives, machinery, plants, sensors and faulttolerant systems, Springer-Verlag, 2011.
  5. R. Isermann, Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance, Springer-Verlag, 2006.
  6. A. D. Pouliezos, and G. S. Stavrakakis, Real Time Fault Monitoring of Industrial Processes, Springer, 1994.
  7. A. Merabet, "Advanced Control for Electric Drives: Current Challenges and Future Perspectives," Electronics, Vol.9, no.11, pp.1762, 2020. DOI: 10.3390/electronics9111762
  8. C. T. Kowalski, and T. Orlowska-Kowalska, "Neural Networks Application for Induction Motor Faults Diagnosis," Mathematics and Computers in Simulation, Vol.63, no.3-5, pp.435-448, 2003. DOI: 10.1016/S0378-4754(03)00087-9
  9. D. An, N. H. Kim, and J. H. Choi, "Statistical Aspects in Neural Network for the Purpose of Prognostics," Journal of Mechanical Science and Technology, Vol.29, no.4, pp.1369-1375, 2015. DOI: 10.1007/s12206-015-0306-8
  10. B. A. Welchko, T. A. Lipo, T. M. Jahns, and S. E. Schulz, "Fault Tolerant Three-phase AC Motor Drive Topologies: A Comparison of Features, Cost, and Limitations," IEEE Int. Electric Machines and Drives Conference, 2003. DOI: 10.1109/TPEL.2004.830074
  11. M. Zhixun, S. Saeid, K. R. "FPGA Implementation of Model Predictive Control with Constant Switching Frequency for PMSM Drives," IEEE Trans. on Industrial Informatics, Vol.10, No.4, pp.2055-2063, 2014. DOI: 10.1109/TII.2014.2344432
  12. M. Stephens, C. Manzie, and M. Good, "Model Predictive Control for Reference Tracking on an Industrial Machine Tool Servo Drive," IEEE Trans. on Industrial Informatics, Vol.9, no.2, pp.808-816, 2013. DOI: 10.1109/TII.2012.2223222
  13. D. H. Kum, D. H. Bahn, S. H. Kwon, S. H. Jin, S. H. Lee, "Design of Fault Detection and Countermeasures for Automotive EMB System," The Journal of The Korean Institute of Communication Sciences, Vol.34, no.5, pp.19-26, 2017.
  14. S. Ganesan, P. W. David, P. K. Balachandran, and D. Samithas, "Intelligent Starting CurrentBased Fault Identification of an Induction Motor Operating under Various Power Quality Issues," Energies, Vol.14, no.2, pp.304, 2021. DOI: 10.3390/en14020304
  15. S. K. Sul, Control of Electric Machine Drive Systems, Wiley-IEEE Press, 2011.
  16. K. Urbanski, and D. Janiszewski, "Sensorless Control of the Permanent Magnet Synchronous Motor," Sensors, Vol.19, No.16, pp.3546, 2019. DOI: 10.1109/VPPC.2008.4677421
  17. F. M. Zaihidee, S. Mekhilef, and M. Mubin, "Robust Speed Control of PMSM Using Sliding Mode Control-A Review," Energies, Vol.12, No.9, pp.669, 2019. DOI: 10.3390/en12091669