• Title/Summary/Keyword: Fatigue load

Search Result 1,504, Processing Time 0.024 seconds

A CONTROLLED CYCLIC LOADING ON THE SURFACE TREATED AND BONDED CERAMIC: STAIRCASE METHOD

  • Yi, Yang-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.298-306
    • /
    • 2008
  • STATEMENT OF PROBLEM: Effect of surface treatment of ceramic under loading does not appear to have been investigated. PURPOSE: The aim of this study was to investigate the effect of surface treatment of esthetic ceramic, which is performed to increase the bonding strength, on the fracture stress under controlled cyclic loading condition. MATERIAL AND METHODS: Sixty 1.0 mm-thick specimens were made from Mark II Vitablocs (Vita Zahnfabrik, Germany) and divided into 3 groups: polished (control), sandblasted, and etched. Specimens of each group were bonded to a dentin analog material base including micro-channels to facilitate the flow of water to the bonding interface. Bonded ceramics were cyclically loaded with a flat-end piston in the water (500,000 cycles, 15Hz). Following completion of cyclic loading, specimens were examined for subsurface crack formation and subsequent stress was determined and loaded to next specimen by the staircase method according to the crack existence. RESULTS: There were significant differences of mean fatigue limit in the sandblasted (222.86 ${\pm}$ 23.42 N) and etched group (222.86 ${\pm}$ 14.16 N) when compared to polished group (251.43 ${\pm}$ 10.6 N) (P<.05; Wald-type pair-wise comparison and post hoc Bonferroni test). Of cracked specimens, surface treated group showed longer crack propagation after 24 hours. All failures originated from the radial cracking without cone crack. Fracture resistance of this study was very low and comparable to failure load in the oral cavity. CONCLUSION: Well controlled cyclic loading could induce clinically relevant cracks and fracture resistance of Mark II ceramic was relatively low applicable only to anterior restorations. Surface treatment of inner surface of feldspathic porcelain in the matsicatory area could influence lifetime of restorations.

The impact of frenulum height on strains in maxillary denture bases

  • Cilingir, Altug;Bilhan, Hakan;Baysal, Gokhan;Sunbuloglu, Emin;Bozdag, Ergun
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.4
    • /
    • pp.409-415
    • /
    • 2013
  • PURPOSE. The midline fracture of maxillary complete dentures is a frequently encountered complication. The purpose of this study was to assess the effect of frenulum height on midline strains of maxillary complete dentures. MATERIALS AND METHODS. A removable maxillary complete denture was fabricated and duplicated seven times. Four different labial frenulum heights were tested for stresses occurring on the palatal cameo surface. The strains were measured with strain gauges placed on 5 different locations and the stresses were calculated. To mimic occlusal forces bilaterally 100 N of load was applied from the premolar and molar region. RESULTS. A statistically significant association between the height of the labial frenulum and the calculated stresses and strains was shown (P<.05) predominantly on the midline and especially on the incisive papilla. The results showed that stress on the anterior midline of the maxillary complete denture increases with a higher labial frenulum. CONCLUSION. Within the limitations of this in vitro study, it can be concluded that the stress on the anterior midline of the maxillary complete denture increases with a higher labial frenulum. Surgical or mechanical precautions should be taken to prevent short-term failure of maxillary complete dentures due to stress concentration and low cycle fatigue tendency at the labial frenulum region.

Analysis of Material Response Based on Chaboche Unified Viscoplastic Constitutive Equation; (CHABOCHE 통합 점소성 구성방정식을 이용한 재료거동해석)

  • Kwak, D.Y.;Im, Y.T.;Kim, J.B.;Lee, H.Y.;Yu, B.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3516-3524
    • /
    • 1996
  • Service conditions for structures at elevated temperatures in nuclear power plant involve transient thermal and mechanical load levels that are severe enough to caeuse inelastic deformations due to creep and plasticity. Therefore, a systematic mehtod of inelastic analysis is needed for the design of structural components in nuclear poser plants subjected to such loading conditions. In the present investigation, the Chabodhe model, one of the unified viscoplastic constitutive equations, was selected for systematic inelastic analysis. The material response was integrated based on GMR ( generallized mid-point rule) time integral scheme and provided to ABAQUS as a material subroutine, UMAT program. By comparing results obtaned from uniaxial analysis using the developed UMAT program with those from Runge-Kutta solutions and experimentaiton, the validity of the adopted Chaboche model and the numerical stability and accuracy of the developed UMAT program were verified. In addition, the developed material subroutine was applied for uniaxial creep and tension analyses for the plate with a hole in the center. The application further demonstrates usefulness of the developed program.

Node Part Development of Vehicle Body with Space Frame Using Design Technology for Additive Manufacturing (적층가공 특화설계기법을 이용한 스페이스 프레임 차체 노드 부품 개발)

  • Yang, Min-Seok;Jang, Jin-Seok;Kim, Da-Hye;Sung, Ji-Hyun;Kim, Jeung-Tae;Cho, Yeong-Chul;Lee, Jae-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.45-52
    • /
    • 2020
  • Recently, design for additive manufacturing (DfAM) technology has become a prominent design methodology for exploiting 3D printing, which leads the Fourth Industrial Revolution. When manufactured by the 3D printing method, it is possible to produce several shapes compared to the conventional casting or cutting process. DfAM-as a newly-proposed design methodology-can be used to specially design products with various shapes to apply functional requirements. Topology optimization verifies load paths to determine the draft design, and a shape-optimized design with objective functions for weight reduction enables efficient lightweight product design. In this study, by using these two DfAM technologies, a lightweight and optimal design is constructed for a node part of a vehicle body with a space frame designed for a lightweight vehicle. DfAM methodologies for concept design and detailed design, and the associated results, are presented. Finally, the product was additively manufactured, a fatigue performance test was performed, and the design reliability was verified.

Development of Failure Criterion for Asphalt Concrete Pavement Based on AASHTO Design Guide (AASHTO 설계법을 이용한 아스팔트 콘크리트 포장체의 피로파괴준식 개발에 관한 연구)

  • Kim, Soo Il;Lee, Kwang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.59-65
    • /
    • 1991
  • Failure criteria for asphalt concrete pavements are developed combining the AASHTO design equation and the multi-layered elastic theory. Thickness range including typical layer thicknesses of four-layer Korea highway structures are employed for pavement structure models. Total of 2430 pavement models with different layer thicknesses and moduli are analyzed. Models with crushed stone and asphalt stabilized base courses are equally included in the analysis. Number of load repetition and the maximum tensile strain at the bottom of asphalt layer are computed from the AASHTO design equation with terminal PSI=2.5 and multi-layered elastic computer program, SINELA, respectively. Failure criteria are developed through the regression analysis. From the analysis, failure criteria for the asphalt concrete pavements with 50% and 95% reliability levels are developed. It is found that the failure criterion of 95% reliability level gives similar results with existing fatigue failure criteria whose terminal performance condition is crack development when compared in a graphical form an equation to estimate failure criterion for a specific reliability level is also proposed.

  • PDF

A Study on the Strength Evaluation and Defect Detection Capability of Adhesive Joint with CNTs (CNT를 첨가한 접착조인트의 결함탐지능 및 강도 평가에 관한 연구)

  • Kim, Tae-Hyeong;Kim, Cheol-Hwan;Choi, Jin-Ho
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.151-155
    • /
    • 2018
  • Mechanical joint and adhesive joint are two typical joining methods for structures. The adhesive joints distribute the load over a larger area than mechanical joints and have excellent fatigue properties. However, the strength of adhesive joint greatly depends on the environmental conditions and the skill of the operator. Therefore, there is a need for techniques to evaluate the quality of the adhesive joints. The electric resistance method is a very promising technique for detecting defects by measuring the electrical resistance of an adhesive joint in which CNTs are dispersed in an adhesive. In this study, Aluminium-Aluminium adhesive single lap joint specimens were fabricated by using the adhesive dispersing CNTs using a sonicator and a 3-roll mill, and the static strengths and defect detection capabilities of the joints using the electrical resistance method were evaluated according to the CNTs content.

A Fuzzy PI Controller for Pitch Control of Wind Turbine (풍력 발전기 피치 제어를 위한 퍼지 PI 제어기)

  • Cheon, Jongmin;Kim, Jinwook;Kim, Hongju;Choi, Youngkiu;Jin, Maolin
    • Journal of Drive and Control
    • /
    • v.15 no.1
    • /
    • pp.28-37
    • /
    • 2018
  • When the wind speed rises above the rated wind speed, the produced power of the wind turbines exceeds the rated power. Even more, the excessive power results in the undesirable mechanical load and fatigue. A solution to this problem is pitch control of the wind turbines. This paper presents a systematic design method of a collective pitch controller for the wind turbines using a discrete fuzzy Proportional-Integral (PI) controller. Unlike conventional PI controllers, the fuzzy PI controller has variable gains according to its input variables. Generally, tuning the parameters of fuzzy PI controller is complex due to the presence of too many parameters strongly coupled. In this paper, a systematic method for the fuzzy PI controller is presented. First, we show the fact that the fuzzy PI controller is a superset of the PI controller in the discrete-time domain and the initial parameters of the fuzzy PI controller is selected by using this relationship. Second, for simplicity of the design, we use only four rules to construct nonlinear fuzzy control surface. The tuning parameters of the proposed fuzzy PI controller are also obtained by the aforementioned relationship between the PI controller and the fuzzy PI controller. As a result, unlike the PI controller, the proposed fuzzy PI controller has variable gains which allow the pitch control system to operate in broader operating regions. The effectiveness of the proposed controller is verified with computer simulations using FAST, a NREL's primary computer-aided engineering tool for horizontal axis wind turbines.

Crack Initiation Life Analysis in Notched Pipe Under Cyclic Bending Loads (굽힘피로 하중을 받는 배관의 피로균열 발생수명 예측)

  • Gwak, Sang-Rok;Lee, Jun-Seong;Kim, Yeong-Jin;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1528-1534
    • /
    • 2001
  • In order to improve Leak-Be(ore-Break methodology, more precisely the crack growth evaluation, a round robin analysis was proposed by the CEA Saclay. The aim of this analysis was to evaluate the crack initiation life, penetration life and shape of through wall crack under cyclic bending loads. The proposed round robin analysis is composed of three main topic; fatigue crack initiation, crack propagation and crack penetration. This paper deals with the first topic, crack initiation in a notched pipe under four point bending. Both elastic-plastic finite element analysis and Neuber's rule were used to estimate the crack initiation life and the finite element models were verified by mesh-refinement, stress distribution and global deflection. In elastic-plastic finite element analysis, crack initiation life was determined by strain amplitude at the notch tip and strain-life curve of the material. In the analytical method, Neuber's rule with the consideration of load history and mean stress effect, was used for the life estimation. The effect of notch tip radius, strain range, cyclic hardening rule were examined in this study. When these results were compared with the experimental ones, the global deformation was a good agreement but the crack initiation cycle was higher than the experimental result.

Application of Bispectral Analysis to Estimate Nonlinear Acoustic Parameter (음향 비선형 파라미터의 추정을 위한 바이스펙트럼 해석법의 적용)

  • Kim, K.C.;Jhang, K.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.2
    • /
    • pp.85-92
    • /
    • 1999
  • The fact that material degradation can be evaluated by measuring nonlinear acoustic effect has been proposed by previous studies. The most conventional method to measure nonlinear acoustic effect is to measure the absolute magnitude of fundamental and $2^{nd}$ order harmonic frequency component in the propagated ultrasonic wave. For this aim, power spectral analysis technique has been used widely. However, the power spectral analysis has fatal disadvantage that the gaussian additive noise superimposed in the wave signal remains in the power spectrum domain. Moreover, the magnitude of $2^{nd}$ order harmonic frequency component generated by nonlinear effect is so small that it may be suppressed by the noise remained in the power spectrum. In order to overcome this problem, this paper proposes an alternative method using bispectrum analysis, which can reduce the effect of addictive gaussian noise and. the nonlinear parameter can be obtained more stably. Simulations showed that the proposed method can obtain the value of nonlinear parameter near to the true value in the case of low SNR signal. Also, in order to confirm the usefulness of our method in actual case, we compared the nonlinear parameter obtained by using both of power spectral and bispectral analysis for several specimen intentionally degraded by fatigue load.

  • PDF

Evaluation of Warm Mix Asphalt Mixtures with Foaming Technology and Additives Using New Simple Performance Testing Equipment (새로운 Simple Performance Testing 장비를 이용한 중온형 폼드 아스팔트 혼합물의 공용성 평가)

  • Kim, Yong-Joo;Im, Soo-Hyok;Lee, David;Hwang, Sung-Do
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.19-29
    • /
    • 2008
  • To produce asphalt mixtures at temperature significantly below $135^{\circ}C$, called "Warm Mix Asphalt (WMA)", new technologies are currently being developed worldwide. To produce WMA mixtures in this research, foaming technology is adopted to effectively disperse asphalt binder at lower temperature than hot mix asphalt (HMA) in the field. The main objectives of this study are to develop WMA process using foaming technology (WMA-foam) and evaluate its performance characteristics under various temperatures and loading conditions. WMA-foam mixtures were produced by injecting PO 64-22 foamed asphalt into warm aggregates whereas WMA mixtures were produced by adding PO 64-22 asphalt (without foaming) in the warm aggregates. Both dynamic modulus and flow number of WMA-foam mixtures were higher than those of WMA mixtures. Based on the limited dynamic modulus and repeated load test results, it is concluded that the WMA-foam mixtures using warm aggregates at $100^{\circ}C$ are more resistant to fatigue cracking and rutting than WMA mixtures.

  • PDF