• Title/Summary/Keyword: Fan tracking

Search Result 19, Processing Time 0.026 seconds

The Study on Vibration Isolation of Industrial Turbo-fan (산업용 터보팬의 진동절연에 관한 연구)

  • Park, Ik-Pil;Kim, Dong-Young;Kwon, Yong-Soo;Ahn, Chan-Woo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.609-615
    • /
    • 2001
  • A turbo-fan is easily exposed to noise and vibration as against other industrial machines and the majority of them is subject to be damaged by vibration. The most usual problem of vibration in a turbo-fan is resonance so the case of being composed of iron sheet structure with low strength like a turbo-fan should be taken seriously. In this paper, FFT(Fast Fourier Transform) and Order tracking method were used to analyze factors of vibration in a turbo-fan and hereby with proper selection of vibration isolator, we wanted to reduce vibration of base. After Order tracking, we knew resonance occurred in rotational frequency 23 Hz(1400 rpm) at the casing and the bearing. After the test of base vibration using vibration isolators, the spring isolator was more effective than the robber isolator in the base vibration and the vibration isolating is more effective in the case that the isolating pad is adhered to the bottom of the isolating spring.

  • PDF

Design of Adaptive Neural Tracking Controller for Pod Propulsion Unmanned Vessel Subject to Unknown Dynamics

  • Mu, Dong-Dong;Wang, Guo-Feng;Fan, Yun-Sheng
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2365-2377
    • /
    • 2017
  • This paper addresses two interrelated problems concerning the tracking control of pod propulsion unmanned surface vessel (USV), namely, the modeling of pod propulsion USV, and tracking controller design. First, based on MMG modeling theory, the model of pod propulsion USV is derived. Furthermore, a practical adaptive neural tracking controller is proposed by backstepping technique, neural network approximation and adaptive method. Meanwhile, unlike some existing tracking methods for surface vessel whose control algorithms suffer from "explosion of complexity", a novel neural shunting model is introduced to solve the problem. Using a Lyapunov functional, it is proven that all error signals in the system are uniformly ultimately bounded. The advantages of the paper are that first, the underactuated characteristic of pod propulsion USV is proved; second, the neural shunting model is used to solve the problem of "explosion of complexity", and this is a combination of knowledge in the field of biology and engineering; third, the developed controller is able to capture the uncertainties without the exact information of hydrodynamic damping structure and the sea disturbances. Numerical examples have been given to illustrate the performance and effectiveness of the proposed scheme.

A Study on the Algorithm Development of End-point Position Tracking for Aerial Work Platform with Bend-linked Boom (굴절링크 붐을 갖는 장비의 끝점 좌표 추적 알고리즘 개발에 대한 연구)

  • Oh, Seok-Hyung;Hong, Yong
    • Journal of Power System Engineering
    • /
    • v.20 no.3
    • /
    • pp.64-73
    • /
    • 2016
  • In this research work, an algorithm development on tracking end-point of aerial work platform with jib profile and bend-linked boom was carried out to find the X, Y and Z direction value using coordinate transformation matrix. This matrix consists of device status value(length and angle) based on camera position axis, which are sent from device controller PLUS+1 by CAN protocol. These values are used to measure the distance and angle from the camera to the end-point. Using these distance and angle value, monitoring system controls FAN/TILT/ZOOM status of camera to get an adequate scene of workplace. This program was written in Java, C# and C for mobile device. These results provide the information to the aerial work device for secure operation.

Enhanced Simulated Annealing-based Global MPPT for Different PV Systems in Mismatched Conditions

  • Wang, Feng;Zhu, Tianhua;Zhuo, Fang;Yi, Hao;Fan, Yusen
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1327-1337
    • /
    • 2017
  • Photovoltaic (PV) systems are influenced by disproportionate impacts on energy production caused by frequent mismatch cases. The occurrence of multiple maximum power points (MPPs) adds complexity to the tracking process in various PV systems. However, current maximum-power point tracking (MPPT) techniques exhibit limited performance. This paper introduces an enhanced simulated annealing (ESA)-based GMPPT technique against multiple MPP issues in P-V curve with different PV system structures. The proposed technique not only distinguishes global and local MPPs but also performs rapid convergence speed and high tracking accuracy of irradiance changing and restart capability detection. Moreover, the proposed global maximum power tracking algorithm can be applied in the central converter of DMPPT and hybrid PV system to meet various application scenarios. Its effectiveness is verified by simulation and test results.

Optimal Controller for Near-Space Interceptor with Actuator Saturation

  • Fan, Guo-Long;Liang, Xiao-Geng;Hou, Zhen-Qian;Yang, Jun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.256-263
    • /
    • 2013
  • The saturation of the actuator impairs the response performance of the near space interceptor control system. A control system based on the properties of linear tracking system is designed for this problem. The properties are that the maximum value of the pseudo-Lyapunov function of the linear tracking control system do not present at the initial state but at the steady state, based on which the bounded stability problem is converted into linear tracking problem. The pseudo-Lyapunov function of the linear tracking system contain the input variables; the amplitude and frequency of the input variables affect the stability of the nonlinear control system. Designate expected closed-loop poles area for different input commands and obtain a controller which is function of input variables. The coupling between variables and linear matrices make the control system design problem non-convex. The non-convex problem is converted into a convex LMI according to the Shur complement lemma and iterative algorithm. Finally the simulation shows that the designed optimal control system is quick and accurate; the rationality of the presented design techniques is validated.

Real-Time Face Detection and Tracking Using the AdaBoost Algorithm (AdaBoost 알고리즘을 이용한 실시간 얼굴 검출 및 추적)

  • Lee, Wu-Ju;Kim, Jin-Chul;Lee, Bae-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.10
    • /
    • pp.1266-1275
    • /
    • 2006
  • In this paper, we propose a real-lime face detection and tracking algorithm using AdaBoost(Adaptive Boosting) algorithm. The proposed algorithm consists of two levels such as the face detection and the face tracking. First, the face detection used the eight-wavelet feature models which ate very simple. Each feature model applied to variable size and position, and then create initial feature set. The intial feature set and the training images which were consisted of face images, non-face images used the AdaBoost algorithm. The basic principal of the AdaBoost algorithm is to create final strong classifier joining linearly weak classifiers. In the training of the AdaBoost algorithm, we propose SAT(Summed-Area Table) method. Face tracking becomes accomplished at real-time using the position information and the size information of detected face, and it is extended view region dynamically using the fan-Tilt camera. We are setting to move center of the detected face to center of the Image. The experiment results were amply satisfied with the computational efficiency and the detection rates. In real-time application using Pan-Tilt camera, the detecter runs at about 12 frames per second.

  • PDF

Localization Development of Axial Fan for KM-SAM Multi-function radar (KM-SAM 다기능레이더용 축류형 송풍기 국산화 개발)

  • Lee, Gyeong-Chan;Choi, Young-Ho;Lee, Kowan-Woo;Seo, Dae-Sue
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.117-124
    • /
    • 2018
  • This paper describes the localization development of an axial fan for KM-SAM multi-function radar. The multi-function radar, which is constantly affected by the external environment, is a key instrument for detecting and tracking low and medium altitude threat targets. Operating this equipment smoothly requires a fan for controlling the internal temperature and humidity. Presently, all such fans are imported. To solve these problems, localization development research was proposed. The development of localization includes analysis of requirements through review of related technical reports such as original equipment and system equipment specification, prototype design, and verification of design requirement through performance test and environmental test. The study results are described. The blower consisted of an axial fan with guide vanes and the motor was designed to generate a maximum airflow of 970 CFM and a wind pressure of 4.8 IWG. Six prototypes were manufactured for performance evaluation. In addition, for reliable data acquisition, AC power supply, fan performance tester and data acquisition equipment were designed and tested. All prototypes were verified as having design requirements equal to or better than those of imports.

Evaluation of Characteristic Improvement of Waste-Polyethylene Asphalt Concrete (폐폴리에틸렌 필름 재활용 아스팔트 콘크리트의 특성 분석)

  • Kim, Kwang-Woo;Li, Xing-Fan;Jeong, Seung-Ho;Lee, Soon-Jae;Lee, Gi-Ho
    • International Journal of Highway Engineering
    • /
    • v.4 no.1 s.11
    • /
    • pp.161-170
    • /
    • 2002
  • This study is a fundamental research for recycling waste polyethylene film(WPF) in asphalt concrete for roadway pavement. The objective of this study is to develop technology of making waste polyethylene asphalt mixture and evaluate properties of the asphalt concrete containing WPF. Asphalt concrete for surface course of pavement was produced through an appropriate mix-design using dense-graded and gap-graded aggregates. Marshall mix design, indirect tensile strength test, wheel tracking test and tensile fatigue test were performed. Test result showed that some WPF asphalt mixtures had a high tensile property and good resistances against rutting and fatigue cracking, compared with normal asphalt mixture.

  • PDF

Development of Localization Tracking System and User Interface of Guiding Robot for the Visually Impaired (시각장애인 유도 로봇의 자기 위치 추적 시스템 및 사용자 인터페이스 개발)

  • Ryu Je-Goon;Shen Dong-Fan;Kwon Oh-Sang;Kim Nack-Hwan;Lee Sang-Moo;Lee Eung-Hyuk;Hong Seung-Hong
    • The KIPS Transactions:PartD
    • /
    • v.12D no.3 s.99
    • /
    • pp.481-492
    • /
    • 2005
  • To guide the guiding robot for the visually impaired carefully, the digital map to be used to search a path must be detailed and has some information about dangerous spots. It also has to search not only safe but also short path through the position data by GPS and INS sensors. In this paper, as the difference of the ability that the visually unpaired can recognize, we have developed the localization tracking system so that it can make a movement path and verify position information, and the global navigation system for the visually impaired using the GPS and INS. This system can be used when the visually impaired move short path relatively. We had also verified that the system was able to correct the position as the assistant navigation system of the GPS on the outside.

Sliding Mode Control with Fuzzy Adaptive Perturbation Compensator for 6-DOF Parallel Manipulator

  • Park, Min-Kyu;Lee, Min-Cheol;Yoo, Wan-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.535-549
    • /
    • 2004
  • This paper proposes a sliding mode controller with fuzzy adaptive perturbation compensator(FAPC) to get a good control performance and reduce the chatter, The proposed algorithm can reduce the chattering because the proposed fuzzy adaptive perturbation compensator compensates the perturbation terms. The compensator computes the control input for compensating unmodeled dynamic terms and disturbance by using the observer-based fuzzy adaptive network(FAN) The weighting parameters of the compensate. are updated by on-line adaptive scheme in order to minimize the estimation error and the estimation velocity error of each actuator. Therefore, the combination of sliding mode control and fuzzy adaptive network gives the robust and intelligent routine to get a good control performance. To evaluate the control performance of the proposed approach, tracking control is experimentally carried out for the hydraulic motion platform which consists of a 6-DOF parallel manipulator.