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Abstract – This paper addresses two interrelated problems concerning the tracking control of pod 
propulsion unmanned surface vessel (USV), namely, the modeling of pod propulsion USV, and 
tracking controller design. First, based on MMG modeling theory, the model of pod propulsion USV is 
derived. Furthermore, a practical adaptive neural tracking controller is proposed by backstepping 
technique, neural network approximation and adaptive method. Meanwhile, unlike some existing 
tracking methods for surface vessel whose control algorithms suffer from “explosion of complexity”, a 
novel neural shunting model is introduced to solve the problem. Using a Lyapunov functional, it is 
proven that all error signals in the system are uniformly ultimately bounded. The advantages of the 
paper are that first, the underactuated characteristic of pod propulsion USV is proved; second, the 
neural shunting model is used to solve the problem of “explosion of complexity”, and this is a 
combination of knowledge in the field of biology and engineering; third, the developed controller is 
able to capture the uncertainties without the exact information of hydrodynamic damping structure and 
the sea disturbances. Numerical examples have been given to illustrate the performance and 
effectiveness of the proposed scheme. 
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1. Introduction 
 
USV is a kind of small surface movement platform 

(robot), which has the ability of autonomous navigation 
in the marine environment, and it can carry out the 
corresponding tasks by equipping with different functional 
modules [1]. As a modern robot, USV has a broad 
application prospect in the military and civil fields. In the 
military field, it has a great advantage in performing tasks 
that are dangerous or inappropriate for people to participate 
in. Meanwhile, it can also be used as a transfer station or 
collector to work with autonomous underwater vehicles 
(AUV) [2]. In civilian areas, USV can reduce the personnel 
expenses and improve the safety of ship navigation. In 
the complex and changeable ocean environment, USV is 
able to track the desired path autonomously and quickly, 
which is the premise and basis for accomplish the task 
satisfactorily. Tracking control is one of the most important 
research topics in USV automatic control field.  

In order to fulfill the mission In the complex marine 
environment, it is necessary to maintain a high speed and 
has a good control characteristic, so this puts forward 
higher requirements for the propulsion system. Pod is 
one of the most promising technologies in the field of 
ship power, which can improve the efficiency and 
maneuverability of surface vessel [3]. Its essence is a kind 

of vector propeller, and propulsion and steering function 
are integrated in pod system. In order to reduce the 
difficulty of operation and the cost of production, on the 
basis of the vector propulsion, the propulsion angle is 
limited to 35 degrees, and this is a pod-like (such as 
outboard engine and waterjet propulsion) [4]. In order to 
study the motion control technology of pod propulsion 
USV, it is necessary to establish its maneuvering motion 
model.  

Recently, the tracking problem of surface vessel has 
been of great interest. Several tracking controllers have 
been proposed in the literatures. Based on Lyapunov’s 
direct method and passivity approach, two tracking 
solutions were proposed in [5] for an underactuated surface 
ship. However, both in [5] and [6], the yaw velocity should 
be persistently exciting to guarantee the stability of the 
control system. Although this limitation was relaxed in 
[7], the desired trajectory was still constrained by several 
conditions. In [8], Lyapunov’s direct method and back-
stepping technique were used to design a controller for 
an underactuated surface vessels. An adaptive dynamical 
sliding mode trajectory tracking controller based on 
backstepping method and dynamical sliding mode control 
theory was presented in [9]. However, in the aforementioned 
works, external disturbances were not considered. In [10], 
an observer was constructed to provide an estimation of 
unknown disturbances and was applied to design a novel 
trajectory tracking robust controller through a vectorial 
backstepping technique. In [11], for underactuated ships in 
fields of marine practice, adaptive method was used to 
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compensate for external disturbance. However, the 
unknown mean external disturbance was assumed to be 
constant (or at least slowly varying). In [12], neural 
network with iterative updating laws based on prediction 
errors was proposed to identify the dynamical uncertainty 
and time varying ocean disturbances.     

It is worth noting that a common assumption in the 
aforementioned literatures [5-10] around controlling 
surface vessels is that the model parameters of the 
controlled surface vessel or its model structure are fully 
known. However, the actual situations are that: (1) no 
matter which way to study the model structure of surface 
vessels, it is based on the assumption and simplification. 
In other words, many nonlinear terms and unknown parts 
are omitted, and the structure of the model is uncertain; 
(2) due to the change of operating conditions, the 
parameters of the model are also changing at all times. In 
summary, the previous assumption is not consistent with 
the actual situation of the project. In order to solve model 
structure and parameters uncertainty, the task of tracking 
controller design was attended using the idea of adaptive 
backstepping with neural network [13-15] or T-S fuzzy 
system [16-19] based approximation. In [20], a single-layer 
structure neural network approach was proposed to track 
control of an autonomous surface vehicle with completely 
unknown vehicle dynamics and subject to significant 
uncertainties. In [21], a single-hidden-layer neural network 
was used to estimate the unstructured uncertainties of a 
class of uncertain nonlinear systems.  

Backstepping method is one of the most popular 
algorithms, which is employed to design tracking controller 
for surface vessels [22]. It is considered as an effective 
design method by constructing both feedback control law 
and associated Lyapunov function. The advantages of the 
method to design controller are probably that: (1) all 
error signals in the system can be easily proved to be 
uniformly ultimately bounded using Lyapunov functions; 
(2) the performance of the tracking control strategy can 
be improved by preserving some nonlinear terms and 
introducing some functional algorithms compared with 
the simple feedback linearization technique. However, 
backstepping control technology has a fatal weakness in 
the control design that multiple differential of the virtual 
velocity control signals can lead to “explosion of 
complexity” phenomenon [23]. Therefore, the final 
control law is very complex, which not only increases the 
difficulty of the derivation of the formula, but also to a 
certain extent increases the amount of calculation of the 
controller. It is very happy that dynamic surface control 
(DSC) technique has been proposed in the literature [24] to 
cope with this aporia by introducing a first-order low pass 
filter in the process of designing tracking controller. On 
the basis of [25], DSC technique was introduced into the 
design of trajectory tracking controllers for underactuated 
surface ships, which greatly simplifies the complexity of 
the controller [26].  

In this paper, for pod propulsion USV, despite the 
presence of environmental disturbances induced by wave, 
wind and ocean-current and unknown dynamics, using 
backstepping method, neural network approximation, 
neural shunting model technique and adaptive method 
design a USV trajectory tracking controller. The main 
contributions of this note can be summarized as follows: 

(1) Under the premise of assumption and simplification, 
based on the analysis of the propeller thrust force and the 
force acting on the hull, the pod propulsion USV is proved 
to be an underactuated system. 

(2) The developed tracking controller is universal and 
model independent, and a novel neural shunting model is 
introduced to cope the problem of “explosion of 
complexity”. 

(3) The control strategy proposed in this paper and some 
techniques of signal processing are easier to be realized in 
engineering. 

The rest of the paper is organized as follows. Section 2 
introduces the derivation process of the model. In Section 3, 
problem formulation and preliminaries are introduced. In 
Section 4, tracking controller for underactuated USV is 
designed. Section 5 proves the stability of controllers and 
sway direction. In Section 6, case studies are carried out to 
show the correctness of the control system. Finally, some 
conclusions are made and future research directions are 
introduced in Section 7. 

 
 

2. Modeling of Pod Propulsion USV 
 
The control effect of USV motion controller is not only 

dependent on the selected control algorithm, but also 
closely related to the mathematical model. In this section, 
the model of pod propulsion USV is analyzed in detail to 
ensure the reliability of controller design and simulation 
research. 

 
2.1 Kinematics equation 

 
The kinematic equation of USV is used to describe the 

correspondence between the earth-fixed inertial frame and 
body-fixed frame.  

As shown in Fig. 1, 0 0 0O X Y Z-  is the earth-fixed 
inertial frame and 0 0 0o x y z-  is the body-fixed frame. In 
actual navigation, the motion state of USV consists of 6 
degree of freedoms (DOFs) including the surge velocity u , 
sway velocity v, heave velocity w, yaw rate r, rolling rate p 
and pitching angle q. However, based on the previous 
experience, too complex or too simple models is difficult to 
describe the movement characteristics of USV. In this 
article, only the horizontal movement of USV is considered. 
That means that heave velocity, rolling rate and pitching 
angle are ignored. d  is propulsion angle and ( , )x y  
represents the position of the USV in the earth-fixed 
inertial frame. The kinematics equation transformation 
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between the earth-fixed inertial frame and the body-fixed 
frame can be expressed as 

 
 ( )Jh y u=&  (1) 

 
Where y is course angle, [x, y, ]Th y= and 

[u, v, r]Tu = . 
)(yJ  is transformation matrix. 

 

 
cos( ) sin( ) 0

( ) sin( ) cos( ) 0
0 0 1

J
y y

y y y
-é ù

ê ú= ê ú
ê úë û

  (2) 

 
Then we can get the kinematics equation of USV. 
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2.2 Kinetic equation 

 
Planar kinetic equation of 3 DOFs is established by 

Lagrange mechanics theory [27]. 
 

 ( ) ( )M C Du u u u u t+ + =&  (4) 
 

where M is inertia matrix, ( )C u  is Coriolis and 
centripetal matrix, ( )D u is Hydrodynamic Damping 
Matrix. For fully driven vessel, because it is equipped with 
side thruster, [ , , ]T

u v rt t t t= . For underactuated vessel, 
0vt = . ut  and rt  are longitudinal and steering thrust, 

respectively. M, ( )C u  and ( )D u  are shown in Eqs.(5), 
(6) and (7). 

 

 
0 0

0
0

u

v g r

g r z r

m X
M m Y mx Y

mx Y I N

é ù-
ê ú

= - -ê ú
ê ú- -ë û

&

& &

& &

 (5) 

 
13

23

31 32

0 0
( ) 0 0

0

a
C a

a a
u

é ù
ê ú= ê ú
ê úë û

 (6) 

 
0 0

( ) 0
0

u

v r

v r

X
D Y Y

N N
u

-é ù
ê ú= - -ê ú
ê ú- -ë û

 (7) 

 
where 

 
13 ( ) ( )v g ra m Y v mx Y r= - - - -& & , 23 (m X ) uua = - & , 

31 ( ) ( )v g ra m Y v mx Y r= - + -& &  and 32 ( )ua m X u= - - & , 
 
m is the mass of the USV, Iz is the moment of inertia of 

the zo  axis, xg is the distance from the barycenter of USV 
to the body-fixed frame. Besides, the detailed meaning of 
each parameters can refer to literature [35]. In [14], the 
thrust of propulsor can be expressed as 

 
 n n nT cV dd d d= +         (8) 

 
where T  is propulsor thrust, nd  is the rotate speed of 
propeller, V  is the speed of USV, 0c >  and 0d >  are 
the coefficients. When the propulsion angle is d , the 
vector thrust in different directions are 
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where px  is the longitudinal moment arm from the center 
of rotation to the pivot point of the propulsor. According to 
[28], if d  is small and 1px > , then we can assume that 

0pY » . Define p uX t=  and p rN t= . Then Eq. (4) can 
be converted to (10). 
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  (10) 

 
Define 11 um m X= - & , 22 vm m Y= - & , 23 g rm mx Y= - & , 
32 g vm mx N= - & , 33 z rm I N= - & , 11 ud X= - , 22 vd Y= - , 
23 rd Y= - , 32 vd N= - , 33 rd N= - . Then Eq. (10) can be 

reduced to (11). 

 
Fig. 1. The corresponding coordinate systems 
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Assuming that USV is symmetrical and the barycenter of 

USV coincides with the center of body-fixed frame. This is 
to say that 0gx = , 0rY =& , 0vN =& , 0rY =  and 0vN = . 
So, we can simplify the Eq. (11) to (12). 
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where 
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ub , vb  and rb  are used to describe immeasurable 

external disturbance forces and moments due to wind, 
wave and ocean current in the body-fixed frame, 
respectively. Thus it can be seen that although the pod 
belongs to vector propulsion, essentially, the pod 
propulsion USV belongs to underactuated ships. This 
theory can also be extended to general vector propulsion 
ships. 

Assumption 1. Assume that the disturbance terms 
satisfy maxu ub b£ , maxv vb b£  and r maxrb b£ , Where 

maxub , v maxb  and r maxb  are unknown positive constants. 
Assumption 2. There exist constraints on the control 

inputs and velocities as maxu ut t£ , r maxrt t£ , maxu u£ , 
maxv v£  and maxr r£ with positive constants maxut , r maxt , 

maxu , maxv  and maxr . 
 
 

3. Problem Formulation and Preliminaries 
 
This section first briefly describes the control objective. 

Then, the corresponding problem of tracking control is 
formulated. The RBF neural network approximation and 
the neural shunting model are finally outlined. 

 
3.1 Problem formulation 

 
Due to the continuous change of working condition, uf , 

vf  and rf  are uncertain. On the other hand, we make a 
lot of assumptions and ignore a lot of nonlinear terms, so it 
is more difficult to use precise structure or parameters to 
express the model of USV. 

Control objective: Under this circumstance, the 
hydrodynamic terms, the modeled dynamics and the 
marine external disturbance are unknown. The control 
objective is to develop an adaptive neural tracking 
controller for underactuated USV to track a specific 
trajectory [ ]d d dx y y . 

Where ( )d dx y  is a target point, and [0, 2 )dy pÎ . 
The functional relationship between them is 
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where all variables have similar meanings to (3). 

Assumption 3. The reference path or trajectory of the 
target is regular and smooth enough. dx , dx& , dx&& , dy , 

dy& , dy&& , dy  and dy&&  are all bounded. 
Lemma 1. 0"¶ > , there exists a smooth function ( )X × , 
(0) 0X =  and ( )x x x£ X + ¶ , x" ÎÂ . 
Remark 1. A simple example function satisfies Lemma 

1 is ( ) [1/ (4 )]x xX = ¶  [5]. 
Remark 2. The passive-bound stable of sway velocity 

v  is proved in [29]. 
 

3.2 Nonlinear function approximation 
 
In engineering application, RBF neural network is 

introduced to approximate the uncertainty of the model. It 
can be described as ( )TW xj  with weight vector qW RÎ , 
note number q, input vector x nRÎWÎ  and basis 
function vector ( ) qx Rj Î . Universal approximation 
results indicate that if q is chosen to be sufficiently large, 
then ( )TW xj  can approximate any continuous nonlinear 
function. The network structure is shown in Fig. 2. 

Define a continuous function (x)f , RBF neural 
network is used to approximate function (x)f . 

 
 ( ) ( )T

xf x W x xj e= + " Ì W  (13) 
 

 
Fig. 2. RBF neural network structure 
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where the weight vector 1 2, ,....,
T q

qW w w w Ré ù= Îë û , e  is 
the approximation error, the neural network node number 

1q >  and 1 2( ) ( ), ( ),...., ( )
T

qx x x xj j j jé ù= ë û , with ( )i xj  
being chosen as the commonly used Gaussian function, 
which have the from    

 

 2

( ) ( )
( ) exp , 1,2,....,

2

T
i i

i
i

x c x c
x i qj

s
é ù- -

= - =ê ú
ë û

   (14) 

 
where [ ]1 2x , ,...., nx x x=  is the input samples, 

[ ]1 2, ,....,i i i inc c c c=  is the center of the receptive field and 
is  is the width of the Gaussian function. The output of the 

network can be described as  
 

 2

1
( ), 1, 2,3,....,

q

k ki i i
i

y w x c i qj
=

= - =å  (15) 

 
where ky  is the output of k  node of the output layer. 
According to [30], it has been proven that (x)f  can be 
approximated to arbitrary any accuracy with the ideal 
constant weights: 

 

 * : arg min sup ( ) ( )
q

x

T T

W R x
W f x W xj

Ì ÌW

ì ü
= -í ý

î þ
  

 
where *TW  is the ideal constant weights. The function 
approximation error e  of neural network is bounded by 
 
 *

m m, xW W xe e£ £ " Ì W  
 

where mW  and me  are positive constants. It is worth 
mentioning that in the following sections, ( )

Ù
·  is the 

estimate value of ( )· , and the estimate error 
( ) ( ) ( )

Ù
· = · - ·
:

. ·  is the absolute operator and ·  
denotes the Euclidean norm. 

 
3.3 Neural shunting model 

 
As everyone knows, the neuron is the basic unit of the 

structure and function of the nervous system, and it has the 
function of feeling stimulation and transmitting signal. 
According to its biological characteristics and circuit 
theory, Hodgkin and Huxley [26] proposed a model for a 
patch of membrane in a biological neural system using 
electrical circuit elements. This modeling work together 
with other experimental work led them to win a Nobel 
Prize in 1963. In their membrane model, the dynamics of 
voltage across the membrane can be described using the 
state equation technique as  

 
( ) ( ) ( )m m p m p Na m Na k m KC V E V g E V g E V g= - + + - - +&  (16) 

 
where mV  is the membrane voltage, mC  is the 
membrane capacitance. Parameters pE , kE  and NaE  

are the saturation potentials for potassium ions, sodium 
ions and the passive leak current in the membrane, 
respectively. Parameters pg , Nag  and Kg  represent the 
conductance of potassium, sodium and passive channel, 
respectively. 

Define 1mC = , i p mE Vc = + , pA g= , Na pB E E= + , 
k pD E E= - , i NaS g+ =  and i KS g- = . Then Eq. (16) can 

be changed into a typical neural shunting model. 
 

 ( ) ( ) ( ) ( )i i i i i iA B S t D S tc c c c+ -= - + - - +&     (17) 
 

where ic  is the neural activity of the i th neuron. A, B 
and D are normal numbers, representing the passive decay 
rate, the upper bound and lower bound of the neural 
activity. iS -  is the total external negative input to the 
neuron called inhibitory input and iS +  is the total external 
positive input to the neuron called excitatory input. This 
neural shunting model was proposed by Grossberg in 1988, 
and it was used to understand the real-time adaptive 
response of an individual to a complex and dynamic 
environment. At the same time, with the development of 
control theory, the neural shunting model has been applied 
in many fields, such as biology, machine vision, robot 
control, path planning and so on. This paper studies the 
application of the neural shunting model to the tracking 
control of pod propulsion USV.  

Remark 3. Neuron output potential ic  is continuous 
and smooth. It varies with the excitation input and the 
inhibitory input. 

Remark 4. Neuron output potential ic  is limited to the 
range of [ , ]D B- . 

 
 

4. Control Design 
 
In order to realize the tracking control of underactuated 

USV, a practical adaptive control law is proposed in this 
chapter. The design procedure contains two steps: design of 
surge motion and design of yaw motion. 

 
4.1 Design of surge motion 

 
The USV’s yaw motion is treated independently from 

surge and sway motions. First, the error variables are 
defined as follows: 

 

 2 2

e d

e d

e e e

e d

x x x
y y y

z x y
y y y

= -ì
ï = -ï
í

= +ï
ï = -î

 (18) 

 
and 

 
 arctan( ) 0.5 [1 sgn( )]sgn( )d e e e ey x x yy p= + × -  (19) 
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It is worth noting that if 0ez = , we define that dy  
takes its previous value and 0d dy y= =& && . Referring to Eq. 
(18), we can get the following equation: 

 

 
cos
sin

e e d

e e d

x z
y z

y
y

=ì
í =î

 (20) 

 
The virtual control law ua  is selected as 
 

 
cos sin sin

cos
ze e d d d d e

u
e

k z x y vy y y
a

y
+ + -

=
& &

   (21) 

 
where 0zek ³  is a positive parameter. 

Note that the ua  is not defined when 
2e
py = ± . 

Therefore in the process of designing the controller, 

requires 
2e
py < . In order to facilitate the implementation 

of the project, it is necessary to carry out the relevant 
transformation, and the transformation does not change the 
virtual control direction. The corresponding transformation 

rules are that if 
2e
py ³ , e ey y p= - ; if 

2 2e
p py- < < , 

e ey y= ; if 
2e
py £ - , e ey y p= + . In other words, 

through the above transformation, the scope of error 

variable ey  is ( , )
2 2
p p

- . 

To avoid the differential of ua , let ua  pass through 
the neural shunting model. 

 
 1̀ 1 1( ) ( ) ( ) ( )u u u u u uA B f D gb b b a b a= - + - - +&   (22) 

 
where 1A , 1B  and 1D  have the same meanings as those 
defined in (17).  

Define  
 

 e uu u b= -  (23) 
 
Differentiating (23), and substituting (12) and (22) into it, 

we have 
 

 
11 11

1 1
e u u u u uu u f b

m m
b t= - = + + +Q&& &      (24) 

 
where  

 
1 1 1([ ( ) ( )] [ ( ) ( )])u u u u u uA f g B f D ga a b a aQ = + + - - . 

 
It is easy to see that Eq. (24) is in a well-known strict-

feedback form. Meanwhile, for unknown or uncertain 
dynamics, define 

 
 ˆ ( )u u u uf f Z e= +  (25) 

where [ , , ]uZ u v r= , ue  is the approximation error with 
unknown upper bound ue . The corresponding control law 
is chosen as  

 
 11 11

ˆ ˆ ( ) cosu ue e u u e u e ek u m f b u m zt f y= - - - - Q -   (26) 
 

where uek  is a parameter greater than zero, ˆ
ub  is the 

estimated value of ub , and its error ˆ
u u ub b b= -% . Finally, 

the update law for the neural network weights and the 
estimated upper bound of external disturbance are taken 
to be 

 
 

11
ˆ ˆ ˆ[ ( ) ( (0))]u u e u u u uW u m Z W Wj s= G - -
&      (27) 

 
max max max 0

ˆ ˆ ˆ[ ( ) ( )]u u e e bu u ub u u b bg f s= - -
&      (28) 

 
where uG , us , ug , bus  are positive design parameters. 

ˆ (0)uW  and max 0ûb  are the initial value of the related 
variables. 
 
4.2 Design of yaw motion 

 
The yaw moment rt  is designed individually for the 

purpose of stabilizing tracking error ey . 
Substituting (18) into (12), error dynamics of the yaw 

motion can be rewritten as following. 
 

 e d ry y= -& &  (29) 
 
The virtual control law ra  is selected as 
 

 r d e ek ya y y= +&  (30) 
 

where 0eky ³  is a positive parameter. 
Remark 5. We noticed that ra  contains dy&  items. In 

practical engineering, all signals are discrete, so in order to 
be closer to reality, ( ( ) ( 1))d d dt t ty y y= - - D& . In this 
paper, 0.01tD = . For special cases, some additional 
transformations also require to be conducted to calculate 
the variable dy& . Such as if ( 1)d ty -  is 0 degree and 

( )d ty  is 359 degrees, suing the above method, we can get 
that d( ( ) ( 1) 360 )d d t t ty y y= - - - Do& . 

To avoid the differential of ra , let ra  pass through 
neural shunting model. 

 
 `2 2 2( ) ( ) ( ) ( )r r r r r rA B f D gb b b a b a= - + - - +&   (31) 

 
Where 2A , 2B  and 2D  have the same meanings as 

those defined in (17). 
Define  
 

 e rr r b= -  (32) 
 
Differentiating (32), and substituting (12) and (31) into it, 

we have 
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33 33

1 1
e r r r r rr r f b

m m
b t= - = + + +Q&& &  (33) 

 
where  
 

2 2 2([ ( ) ( )] [ ( ) ( )])r r r r r rA f g B f D ga a b a aQ = + + - - . 
 
Similar to the previous discussion, define 
 

 ˆ ( )r r r rf f Z e= +  (34) 
 

where [ , , ]rZ u v r= , re is the approximation error with 
unknown upper bound re . The corresponding control law 
for (32) is chosen as  
 
 33 33

ˆ ˆ ( )r re e r r e r ek r m f b r mt f y= - - - - Q -     (35) 
 
Where rek  is a parameter greater than zero, ˆ

rb  is the 
estimated value of rb , and its error ˆ

r r rb b b= -% . Finally, 
the update law for the RBF neural network weights and the 
estimated upper bound of external disturbance are taken to 
be 

 
 

33
ˆ ˆ ˆ[ ( ) ( (0))]r r e r r r rW r m Z W Wj s= G - -
&       (36) 

 
max max max 0

ˆ ˆ ˆ[ ( ) ( )]r r e e br r rb r r b bg f s= - -
&       (37) 

 
where rG , rs , rg  brs are positive design parameters. 

ˆ (0)rW  and max 0r̂b  are the initial value of the related 
variables. 

Compared with the works in [22] and [32], the 
advantages of this paper are that it does not need the 
information around the hydrodynamic terms, unmodeled 
dynamics due to the online approximation capability of 
RBF neural network. At the same time, in assumption 2, 
we assume that the external disturbances are bounded. We 
must adopt certain methods to deal with the disturbances, 
so an adaptive method is used to compensate the unknown 
external disturbances. 

Remark 6. As mentioned in the literature [11], RBF 
neural network is only used to process the uncertain  
functions fu and fr.  The control gain coefficients 

11

1
m

and
33

1
m

are not being approached. Based on past 

experience, the estimation of a constant is not satisfactory. 
In order to avoid the potential control singularity problem, 
it is advisable to the control gain without being approached. 

 
 

5. Stability Analysis 
 
Theorem 1. Consider the closed-loop system consisting 

of the USV dynamics (3), (12), the control laws (26), (35), 

the RBF neural network adaptive update laws (27), (36), 
the neural shunting models (22), (31) together with the 
disturbance adaptive update laws (28), (37). There exist 
appropriate design parameters zek , uek , eky , rek , uG , 

us , ug , bus , rG , rs , rg , brs  such that all error signals 
in the system are uniformly ultimately bounded (UUB). 

Define 
 

 u u uy b a= -  (38) 
 
Differentiating (38), and substituting (21) and (22) into it, 

we have 
 

 1 1

1 1

([ ( ) ( )] [ ( )
( )])

u u u

u u u u

u

y
A f g B f

D g

b a
a a b a

a

= -

= - + + -

- - C

& &&
 (39) 

 
where  

 

 
1

u u u u
d

d

u u u u u
d r d d

d r d d

x y x
x y x

y x y v
y x y v

a a a a
y

y
a a a a a

y
y

¶ ¶ ¶ ¶
C = + + +

¶ ¶ ¶ ¶

¶ ¶ ¶ ¶ ¶
+ + + + +
¶ ¶ ¶ ¶ ¶

&& & &

&& && && &
& &

  (40) 

 
Meanwhile, from the definition of ( )uf a  and ( )ug a  

can be seen that ( ) 0uf a >  and ( ) 0ug a > . If 0ua > , 
( )u uf a a= and ( ) 0ug a = ; if 0ua < , ( ) 0uf a =  and 
( )u ug a a= - . Therefore, if 1 1B D= , the Eq. (39) is 

simplified as 
 

 1 1u u u u u uy A Bb a b a= - = - + - C& &&         (41) 
 

where 1 ( ) ( )u u uA A f ga a= + + . 
Similarly, define 
 

 r r ry b a= -  (42) 
 
Differentiating (42), and substituting (30) and (31) into it, 

we have 
 

 2

2 2 2

([ ( ) ( )]
[ ( ) ( )])

r r r r r r

r r

y A f g
B f D g

b a a a b
a a

= - = - + +
- - - C

& &&
     (43) 

 
where  

 

 2
r r r

r r
r r

a a a
y y y

y y y
¶ ¶ ¶

C = + +
¶ ¶ ¶
& & &&

&  (44) 

 
Similar to previous, if 2 2B D= , the Eq. (43) is 

simplified as 
 

 2 2r r r r r ry A Bb a b a= - = - + - C& &&  (45) 
 
where 2 ( ) ( )r r rA A f ga a= + + . 
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Remark 7. 1C  and 2C  are bounded, and we assume 
that 1 1C £ C  and 2 2C £ C . Where 1C  and 2C  are 
normal numbers greater than zero. 

Proof. Consider the following Lyapunov function 
candidate. 

 

 
2 2 2 2 2 2

11 33

1 1 1 2 1 2
max max

1 (
2

)

e e e e u r

T T
u u u r r r u u r r

V z m u m r y y

W W W W b b

y

g g- - - -

= + + + + +

+ G + G + +% %% % % %
   (46) 

 
Take the time derivative V&  along (20), (24), (29), (33), 

and submitting the control laws (26) and (35), we have 
 

2 2 2 2

1 1
11 33

1 1
max max max max

2 2
max max

1 1( ) ( )
2 2

ˆ ˆ( ( ) ) ( ( ) )
ˆ ˆ( ( ) ) ( ( ) )

1 1( ) ( )
2 2

ze e e e ue e re e

T T
u e u u u r e r r r

u e e u u r e e r r

e u e u e e r e r e u r

u

V k z k k u k r

W u m Z W W r m Z W

b u u b b r r b

u b u b u r b r b r

y

y y

j j

f g f g

f f e e

- -

- -

£ - - - - - -

- -G - -G

- - - -

+ - + - + +

+

&

& &% %
& &% %

u r ry y y+& &

 

 
Submitting the adaptive laws (27), (28), (36) and (37) 

yields 
 

2 2 2 2

max max max 0 max max max 0

2 2
max max

1 1( ) ( )
2 2

ˆ ˆ ˆ ˆ( (0)) ( (0))
ˆ ˆ ˆ ˆ( ) ( )

1 1( ) ( )
2 2

ze e e e ue e re e

T T
u u u u r r r r

bu u u u br r r r

e u e u e e r e r e u r

u u r r

V k z k k u k r

W W W W W W

b b b b b b

u b u b u r b r b r

y y y y

y y

s s

s s

f f e e

£ - - - - - -

- - - -

- - - -

+ - + - + +

+ +

&

% %

% %

& &

 

 
From Young's inequality, we have 
 

 
22 ˆ (0)

ˆ ˆ( (0))
2 2

i iiT
i i i

W WW
W W W

-
- - £ - +

%
%  

 
2 2

max 0
max max max 0

ˆ( )ˆ ˆ( )
2 2
i i i

i i i
b b b

b b b
-

- - £ - +
%%  

 
where i u=  and r . Then 

 
2 2 2 2

2 2
2 2
max max

2 2

2 2
max max 0 max max 0

1 1( ) ( )
2 2

2 2 2 2
ˆ ˆ(0) (0)

2 2
ˆ ˆ( ) ( )

2 2

ze e e e ue e re e

u r u r
u r bu br

u u r r

u r

u u r r
bu br

V k z k k u k r

W W b b

W W W W

b b b b

y y

s s s s

s s

s s

£ - - - - - -

- - - -

- -
+ +

- -
+ +

&

% % % %

 

2 2
max max

1 1( )
2 2u r u r u u r rb b y y y ye e+¶ + + + + +& &  

 
Submitting the Eqs. (41) and (45) yields 
 

2 2 2 2

2 2
2 2
max max

2 2

2 2
max max 0 max max 0

2
max max 1

2

1 1( ) ( )
2 2

2 2 2 2
ˆ ˆ(0) (0)

2 2
ˆ ˆ( ) ( )

2 2
1( ) ( )
2

1 (
2

ze e e e ue e re e

u r u r
u r bu br

u u r r

u r

u u r r
bu br

u r u u u u u

r r r r

V k z k k u k r

W W b b

W W W W

b b b b

b b y A B

y A

y y

s s s s

s s

s s

b a e

e b

£ - - - - - -

- - - -

- -
+ +

- -
+ +

+¶ + - - +

+ -

&

% % % %

2 1 2)r u rB y X y Xa- - -

 

 
Define 1 uB A=  and 2 rB A= . 
Then u u u u u uA A A yb a- = , r r r r r rA A A yb a- = . So 
 

2 2 2 2

2 2
2 2
max max

2 2

2 2
u max u max 0 max max 0

2 2 2 2
max max

1 2

1 1( ) ( )
2 2

2 2 2 2
ˆ ˆ(0) (0)

2 2
ˆ ˆ( ) ( )

2 2
1 1( )
2 2

ze e e e ue e re e

u r u r
u r bu br

u u r r

u r

r r
bu br

u r u u r r u r

u r

V k z k k u k r

W W b b

W W W W

b b b b

b b A y A y

y X y X

y y

s s s s

s s

s s

e e

£ - - - - - -

- - - -

- -
+ +

- -
+ +

+¶ + - - + +

- -

&

% % % %

 

 
Form Young’s inequality, i.e., 

2 21
2 2

ab a bs
s

£ + with 0s >  and 2( , )a b ÎÂ , it 

follows that 
 

 
2 2

1
1 2 2

yu u
u

yu

y Xy X
s

s
- £ +  

 
2 2

2
2 2 2

yr r
r

yr

y Xy X
s

s
- £ +  

 
Where yus  and yrs  are arguments greater than zero. 

Then  
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2 2 2 2

2 2
2 2
max max

2

2 2

2
2

u max u max 0

2
max max 0

max max

2
1

1 1( ) ( )
2 2

2 2 2 2
ˆ (0)

( ) ( )
2 2 2

ˆ (0) ˆ( )
2 2

ˆ( )
( )

2

2

ze e e e ue e re e

u r u r
u r bu br

u uyu yr
u u r r u

r r

r bu

r r
br u r

yu

V k z k k u k r

W W b b

W W
A y A y

W W b b

b b
b b

X

y y

s s s s

s s
s

s s

s

s

£ - - - - - -

- - - -

-
- - - - +

- -
+ +

-
+ + ¶ +

+

&

% % % %

2
2 22 1 1

2 2 2u r
yr

X
e e

s
+ + +

  (47) 

 

Set 1
1 0
2uekl = - > , 2

1 0
2rekl = - > , 3 2

us
l = ,  

4 2
rs

l = , 5 2
bus

l = , 6 2
brs

l = , 7 0
2
yu

uA
s

l = - > ,  

8 0
2
yr

rA
s

l = - >  and  

 
2 2

2 2
u max u max 0 max max 0

2 2
2 21 2

max max

ˆ ˆ(0) (0)

2 2
ˆ ˆ( ) ( )

2 2
1 1( )

2 2 2 2

u u r r

u r

r r
bu br

u r u r
yu yr

W W W W

b b b b

X Xb b

s s

s s

e e
s s

- -
D = +

- -
+ +

+¶ + + + + +

 

 
Then Eq. (47) becomes 
 

 

22 2 2 2
1 2 3

2 2 2 2 2
4 5 max 6 r max 7 8

ze e e e e e u

r u u r

V k z k u r W

W b b y y

y y l l l

l l l l l

£ - - - - -

- - - - - + D

& %

% %%
 (48) 

 
Define 
 

 1 2 3 4 5 6 7 8: min{ , , , , , , , , , }ze ek kyl l l l l l l l l= , then it 
follows form Eq. (48) that 
 
 2V Vl£ - + D&  (49) 

 
Solving inequality (49) gives 
 

2 2( (0) ) (0) , 0
2 2 2

t tV V e V e t
l l l

- -D D D
£ - + £ + " > . 

 
The above inequality means that V  is eventually 

bounded by 
2l
D

. Thus all the error signals are uniformly 

ultimately bounded. In the case of appropriate parameters, 

the quantity 
2l
D

 can be made arbitrarily small. Thus, the 

tracking errors may be made arbitrarily small. 
In order to ensure the completeness of the proof of 

stability, the bounded dynamics of the sway velocity need 
to be analyzed. Construct the following Lyapunov function. 

 

 2
22

1
2vV m v=  (50) 

 
According to Eq. (12), its time derivative is computed as 
 

 
11 22

2
22 11

2
22

( )v v

v

v

V v m ur d v b

d v m uvr vb

d v vg

= - - +

£ - - +

£ - +

&

 (51) 

 
where 11max[ ]v vm u r bg = + . Obviously, if 22vv dg>  
then 0vV <& . Thus it can be concluded that the sway v  is 
bounded. 

 
 

6. Numerical Simulations 
 
In this section, we will present three examples to illustrate 

the effectiveness and merits of the control scheme: 
Comparative examples with the result in Li et al. [25] and 
a classic PID controller [35]. For this purpose, the USV is 
selected as the Cybership 2, a 1:70 scale model of a 
supply vessel. For detail parameters, the readers can refer 
to [33-34]. The corresponding parameters we used are 

11 25.8m = , 22 33.8m = , 33 2.76m = , 11 0.72d = , 22d =  
0.8896 , 33 1.9d = . 

According to [11, 20], the external disturbances are 
considered as 

 

 
0.5 0.1sin(0.2 ) 0.3cos(0.5 )
0.5 0.2sin(0.2 ) 0.1cos(0.4 )
0.5 0.1sin(0.1 ) 0.1cos(0.2 )

u

v

r

b t t
b t t
b t t

= + +ì
ï = + +í
ï = + +î

     (52) 

 
That is nonzero mean time-varying disturbance. In the 

simulation, the reference path is selected as   
 

 
0.5 , 0,0 100;
50 0.5cos(0.03( 100))
0.5sin(0.03( 100)), 100.

d d

d

d

x t y t
x t
y t t

= = £ £ì
ï = + -í
ï = - >î

 (53) 

 
Can be seen from the Eq. (53), the speed component 

along x -axis takes a constant value, and this situation is in 
line with the actual project. 

The initial conditions of USV are 
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[ (0), (0), (0), (0), (0), (0)]

[ 10 , 10 ,0 ,0 / ,0 / ,0 / ]
x y u v r

m m rad m s m s m s
y

= - -
. 

 
The control parameter is selected as 0.1zek = , eky =  

0.01 , 4uek = , 40rek = , 100uG = , 0.1us = , 100rG = , 
0.1rs = , 1000ug = , 0.01bus = , r 1000g = , 0.01brs = ,

0.1¶ =  and the neural shunting model design parameters 
are taken as 1 5A = , 1 1 5 ( ) ( )u u uB D A f ga a= = = + + , 

2 5A = , 2 2 5 ( ) ( )r r rB D A f ga a= = = + + . 
Define p du u u= -  and p dr r r= - . 
The PID controller has the structure [35]. 
 

 
0

K K
t

u Pu p Du p Iu pK u u u dtt = + + ò&  

 
0

K K
t

r Pr p Dr p Ir pK r r r dtt = + + ò&  

 
Where ut  and rt  are the force and moment in the 

forward and steering directions, respectively. At the same 
time, the corresponding control parameters are selected as 

1100PuK = , 90DuK = , 10IuK = , 80PrK = , 10DrK =  
and 1IrK = . The corresponding control laws of Li et al. 
[25] can refer to the original literature. 

Remark 8. The expansion forms of ua&  and ra&  are 
shown in (40) and (44), respectively. If nothing is done, 
when designing the controller, ua&  and ra&  need to be 
fully deduced, and we can find that they are very 
complicated. For higher order systems, virtual control law 
needs to be repeated derivation. Such as [36], for a three 
order system, its virtual control law is derived two times, 
and its final control law is very complex. If neural shunting 
model is used, let ua  and ra  pass through (22) and (31), 
respectively. In the final control laws (26) and (35), ub  
and rb  are needed without the need for ua&  and ra& . 
From this we can see that the problem of “explosion of 
complexity” is solved by introducing the neural shunting 
model. Besides, in essence, neural shunting model is a kind 
of filter. It can make the control signal flatten, which is 
beneficial to engineering application. 

Remark 9. From the space point of view, neural 
shunting model can reduce the complexity of the control 
law. In the process of designing the controller, we can 
deeply appreciate the convenience of this simplification. 
Qualitative analysis from the point of view of time, a 
simple control law can save computation time (It is 
difficult to represent in simulation of this paper, and the 
neural shunting model will be used by the actual controller 
to quantify the time saved.). From the point of view of 
practical engineering, simple control algorithms mean that 
low configuration controllers can be selected, which can 
save costs. 

Simulation results are plotted in Figs. 3-7. Fig. 3 shows 
the trajectory tracking in two-dimensional plane, where the 
reference path consists of straight line and a curve. It 
shows that in the presence of external disturbances and 
model uncertainty, the tracking results of the proposed 

strategy in this paper, the control strategy in Li et al. [25], 
and the PID control strategy. Meanwhile, the tracking 
performance of the proposed strategy and Li et al. [25] are 
better than PID. We can further see that the tracking effect 
of the proposed strategy is basically the same as that of Li 
et al. [25]. Fig. 4 demonstrates the position errors of three 
control strategies. We can find that the error convergence 
speed of the proposed strategy is obviously better than that 
of Li et al. [25]. Besides, the error of PID strategy is the 
worst, and the convergence is very slow. The reason is that 
the variables of the model are mutually coupled. 

Figs. 5, 6 and 7 show the control forces and moments of 
each control strategy. Fig. 5 demonstrates the control inputs 
of the proposed control strategy. In the early stages, the 
maximum values of ut  and rt  are 300N and 1000N/m, 
respectively. They converge to a smaller value in a very 
short time, and compensate for the effects of external 
disturbances with smaller fluctuations. Fig. 6 demonstrates 
the control inputs of the control strategy in Li et al. [25]. In 
the early stages, its maximum values of ut  and rt  are 
obviously larger than the values of the proposed control 
strategy, and in the relatively stable phase, its control 
inputs also have larger chattering. The reason lies in that 
as noted previously, the essence of neural shunting model 

 
Fig. 3. Tracking trajectory 

 

 
Fig. 4. Tracking errors 
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is a filtering, so it can make the system signal stationary.  
Neural shunting model is introduced into the design of 
trajectory tracking controller, so the control input of the 
proposed control strategy is more stable than that of Li et al. 
[25]. Fig. 7 shows the control inputs of the PID control 
strategy. The maximum values of its control inputs are 
larger than the proposed strategy. In other words, the 
control strategy proposed in this paper can save energy on 

the basis of ensuring the tracking effect. 
 
 

7. Conclusion 
 
In this paper, one focuses on tracking control for pod 

propulsion USV subject to unknown dynamics. On the 
basis of force analysis and assumption, the underactuated 

    
Fig. 5. Control inputs ut  and rt (the proposed strategy) 

 

    
Fig. 6. Control inputs ut  and rt ( Li et al. [25]) 

 

    
Fig. 7. Control inputs ut  and rt (the PID strategy) 
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characteristic of pod propulsion USV is proved by 3 DOFs 
MMG model. Then for the underactuated characteristic, in 
the case of unknown dynamics and external disturbance, 
the tracking control strategy is proposed. A novel neural 
shunting model is employed to solve the "explosion of 
complexity" problem of backstepping method. Furthermore, 
the universal approximation of neural network is used to 
solve the problem of model uncertainty and adaptive 
method is used to compensate for time-varying external 
disturbances. Finally, the UUB stability of all error signals 
has been proved using Lyapunov theory. Simulation results 
have been illustrated that the proposed algorithm can make 
the USV track the reference trajectory very well, which can 
also be used for the other practical underactuated system 
such as the nonholonomic robotics. 

Even though, this work cannot attend to every detail of 
the control task, e.g., the algorithm may not account for the 
characteristic of propulsor. In other words, the final control 
laws are force and moment, not propulsion angle and 
propeller speed. Besides, from the point of view of 
quantitative analysis and practical engineering, how much 
computing time can save. The problems will be solved in 
the following works. 
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