• Title/Summary/Keyword: Fan filter unit system

Search Result 10, Processing Time 0.029 seconds

Test Method for Particle Removal Characteristic of Equipment Fan Filter Unit (EFFU) (Equipment Fan Filter Unit (EFFU)의 Particle 제거 성능평가 방법)

  • Lee, Yang-Woo;Ahn, Kang-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.59-62
    • /
    • 2012
  • This test method covers a procedure for measuring particle removal characteristic of equipment fan filter unit(EFFU) installed inside of semiconductor process equipments, FPD manufacturing equipments and so on. Since EFFU is a combination of air filter and the assembly of fan, motor and frame, the integrity of these parts is very important for the performance of EFFU. So a conventional particle removal test method for air filters is not suitable for EFFU particle removal performance. This test method defines an evaluation method for EFFU which is installed inside an enclosed space to remove particles that are generated inside process equipment. The particle removal performance of EFFUs is usually depending on the performance of filter media and air flow rate. To understand a performance of an EFFU, the filter media characteristic, air flow rate and the integrity of EFFU parts should be considered simultaneously. This test method is intended to demonstrate the system performance of an EFFU and successfully evaluated EFFU performance characteristics.

A Numerical Analysis on the Airflow Characteristics in Super Cleanrooms with Different Design Types (초청정 클린룸 공조방식에 따른 기류특성에 관한 수치해석)

  • 노광철;이승철;오명도
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.9
    • /
    • pp.751-761
    • /
    • 2003
  • We performed the numerical analysis on the airflow characteristics in the two type of cleanroom systems, which are the axial fan type (AFT) and the fan filter unit (FFU). A computational fluid dynamic model was applied to investigate and compare the nonuniformity, the deflection angle and the air ventilation effectiveness of the two designs of cleanrooms when dampers are adjusted and not adjusted. And the flow-resistance models of the various components were used in this simulation. We know that the airflow characteristics of the cleanrooms are largely affected by damper adjusting And we also find out that the FFU system is superior to the AFT system through the comparison of the cleanroom performance indices.

Flow Analysis around the Roller Conveyor in a Clean Room (클린룸 내 롤러 컨베이어 운송장치 주위의 유동해석)

  • Jeon, Hyun-Joo;Park, Chan-Woo;Im, Ik-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1507-1512
    • /
    • 2009
  • Flow field in a roller conveyor system, induced from the movement of a cassette in which glasses for flat panel display are loaded, is numerically studied in this paper. Contamination on the glass surface by dust particles produced from mechanical friction between roller and cassette is predicted from the analysis results of flow fields. Results show that a large swirl flow is formed under the moving cassette with constant speed. This swirl flow is confined only under the cassette because two main streams from the backward and the fan filter unit on the top ceiling are sufficiently strong. Therefore, it can be said that possibility of the contamination by the particles originated from the friction is relatively low. It is also revealed that flow direction between glass plates is changed according to the speed of the cassette movement due to the shear force of glass plates.

  • PDF

A Numerical Study on Flow Field near the Roller Conveyor for Flat Panel Display (평면 디스플레이 기판 운송용 롤러 컨베이어 주위의 유동장에 관한 수치해석 연구)

  • Jeon, Hyun-Joo;Kim, Hyoung-Jin;Im, Ik-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.6-11
    • /
    • 2009
  • Flow field in a roller conveyor system, induced from the movement of a cassette in which glasses for flat panel display are loaded, is numerically studied in this paper. Contamination on the glass surface by dust particles produced from mechanical friction between roller and cassette is predicted from the analysis results of flow fields. Results show that a large swirl flow is formed under the moving cassette with constant speed. This swirl flow is confined only under the cassette because two main streams from the backward and the fan filter unit on the top ceiling are sufficiently strong. Therefore, it can be said that possibility of the contamination by the particles originated from the friction is relatively low. It is also revealed that flow direction between glass plates is changed according to the speed of the cassette movement due to the shear force of glass plates.

Development of an Oil Mist Collector Equipped with Centrifugal De-oiling System (원심력 필터 재생기능을 갖춘 오일 미스트 여과 집진장치 개발)

  • Kim, Tae-Hyeung;Seo, Jeoung-Yoon;Ha, Hyun-Chul;Kim, Jong-Cheul;Cho, Jin-Ho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.3
    • /
    • pp.166-175
    • /
    • 2005
  • Health effects associated with metal working fluid (MWF) exposures include dermatitis, respiratory disease, hypersensitive pneumonitis, and asthma. Frequently, occupational exposures to MWFs are controlled by ventilating an enclosure with an air cleaning unit that includes a fan preceded by various kinds of filtration. There are several kinds of air cleaning units used in machining centers. But the associated troubles have hindered from efficiently using these devices. The main problem is the relatively short period of filter replacement. The reason is that the air cleaning units usually do not have the de-oiling systems, thus leading the earlier clogging of filters and reducing the flow rate of hood. Thus, the first stage of study was conducted to overcome this problem by developing the new oil mist collector equipped with the easy de-oiling system. The principle of de-oiling is that the centrifugal force generated by spinning the drum covered by filter fabric separates oils from the filter fabric. It would be very similar to the spin-dry laundry. By adopting this de-oiling technique, the problems associated with the conventional oil mist collectors could be solved. Several tests/analyses were performed to make the lab-scale oil mist collector. The collection efficiencies and the de-oiling efficiencies of commercially available filter fabrics were tested. Subsequently, the endurance test were conducted by observing SEM photos of filter fabrics and measuring tensile strength/expansion coefficient after spinning the filter drum for 20 minutes at the different rotation speeds. By doing these experiments, the most appropriate filter fabric and rotation speed/duration were selected. Finally, the new oil mist collector was designed. In the near future, this device must be tested in the real machining center.

Measurement and Analysis of Energy Consumption of HVAC Equipment of a Research Building (연구용 건물의 열원 및 공조기기의 에너지 소비량 측정 및 분석)

  • Kim Seong-Sil;Kim Youngil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.914-922
    • /
    • 2004
  • In this study, measurement and analysis of energy consumption of a research building have been conducted. The energy audit procedure includes monitoring of electricity and LNG consumption over a period of three yews from 2000 to 2002. Data acquisition system for collecting energy consumption data of HVAC equipment such as chillers, fan filter units, AHUs, cooling towers, boilers, pumps, fan coil units, air compressors and etc. has been installed in a building located in Seoul. Data collected at an interval of 1 minute are analyzed for studying the energy consumption pattern of a research building. Percentage of energy consumption of all HVAC equipment is $51.0\%$ in 2000, $55.4\%$ in 2001, and $62.3\%$ in 2002, respectively. Electricity consumption of chillers accounts for $17.6\%$ of the total energy consumption, which is the largest. Annual energy consumption-rate per unit area is $840.5Mcal/m^2{\cdot}y$ in 2000, $1,064.8Mcal/m^2{\cdot}y$ in 2001, and $1,393.0Mcal/m^2{\cdot}y$ year 2002, respectively.

Off-gassing Woodblock Prints - Storage Impact Considerations and Mitigation Strategies -

  • Romero, Ana Teresa Guimaraes;Matsui, Toshiya;Nagahama, Eriko
    • Journal of Conservation Science
    • /
    • v.36 no.1
    • /
    • pp.28-36
    • /
    • 2020
  • The storage environment of a Japanese woodblock print collection was assessed for organic acids. The active air sampling method was used to collect organic acid emissions in the low microgram range from areas of a selected woodblock print with different pigments, following which an off-gassing mitigation strategy based on the fan filter unit(FFU) system was investigated. Research findings revealed that the off-gassing behavior of woodblock prints is significantly impacted by storage practices and to a lesser degree by the pigments. The FFU system can be used as a mitigation strategy, but the permanence of the results depends on the storage conditions.

Numerical evaluation of risk rates for contamination sources in a minienvironment (클린룸 국소환경에서 오염원의 위험율에 대한 수치해석적 평가)

  • Noh, Kwang-Chul
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.181-189
    • /
    • 2018
  • In this study, the risk rates of different contamination sources of the contaminant in a minienvironment were analyzed through Computational Fluid Dynamics (CFD) simulation. The airflow pattern characteristics can only predict the qualitative variation of contaminant concentration, but cannot evaluate the quantitative variations in the risk rate of sources. From the results, the ambient contamination sources mainly affect wafers in the Front Opening Unified Pod (FOUP), whereas the internal contamination sources mainly affect wafers laid on the robot arm in the minienvironment. And the purging plenum system is very useful in protecting the wafers in the FOUP from contaminants transferred from the Fan Filter Unit (FFU). However, this system is unable to protect the wafers on the robot arm from internal contaminants and the wafers in the FOUP from sources of the interface between the FOUP and the minienvironment.

A Study on the Improvement of Airflow Deflection in a Cleanroom of Class 1000 (Class 1000 클린룸에서 편류 개선에 관한 연구)

  • Noh, Kwang-Chul;Lee, Seung-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.4
    • /
    • pp.225-233
    • /
    • 2010
  • We performed 3 dimensional numerical study on the improvement of the airflow deflection in the cleanroom of Class 1000, which is presently operated for the manufacturing process in Korea. The Deflection angle and the non-uniformity were investigated to analyze the airflow characteristics and the performance of cleanroom with variations of the cleanroom occupancy state, the filters' arrangement, and the floor return air system. From the numerical results, we found out that the airflow pattern of the cleanroom is more unidirectional and stable in the condition of at-rest than in the condition of as~built. It is due to that the equipments installed in the cleanroom play a role like partitions, which prevent the airflow from inclining toward the recirculation air duct. And it is needed to arrange the filter units parallel to the equipments array without a gap between them for maintaining the unidirectional airflow pattern. Finally, we knew that it is very important to install the partition like the eyelid above the equipment to keep the unidirectional airflow around the equipments and remove the contaminants quickly.

Development of the Air Floating Conveyor System for the Large Glass Sheet (대평판 글라스 이송용 공기 부상 이송장치의 개발)

  • Lee, Tae Geol;Yu, Jin Sik;Jung, Hyo Jae;Kim, Jong-Hyeong;Kim, Joon Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.635-642
    • /
    • 2013
  • We have prepared a DEMO conveyor device for conveying a large 8G class glass sheet using ahorizontal air-cushion system. This device consists of the body frame and the driving frame that are combined to realize a frame for conveying glass without any contact.The driving frame comprises an air flotation table (bed), drive roller supported at both ends, and ASU. Part of the ASU serves to control the airflow as the chamber consists of a porous pad and fan. Fiber filters replace the porous pad and axial fans serve as an air compressor. In addition, to determine the appropriate glass levitation from the air table, this study examined the design specifications of the applied filter (discharge speed of HEPA and ULPA filters, and flow rate) as well as the height of the and the proper supporting roller height (14mm). Then, after adjusting the position of the ASU and the number of ASUs required to configure the UNIT air floating C/V, we analyzed the height and flatness of the glass and derived the appropriate layout (1140-mm distance between ASUs).